Bluetooth Low Energy (BLE) mesh networks enable diverse communication for the Internet of Things (IoT). However, existing BLE mesh implementations cannot simultaneously achieve low-power operation, symmetrical communication, and scalability. A major limitation of mesh networks is the inability of the BLE stack to handle network-scalable time synchronization. Pulse-coupled oscillators (PCOs) have been studied extensively and are able to achieve fast and reliable synchronization across a range of applications and network topologies. This paper presents a lightweight physical (PHY) layer accelerator to the BLE stack that enables scalable synchronization command with a PCO. The accelerator is a fully digital solution that can be synthesized with only the standard cells available in any silicon technology. This paper provides a detailed analysis of PCO-based BLE mesh networks and explores per-node system-level requirements. Finally, the analytical results are validated with measurements of a custom radio node based on the ubiquitous AD9364 transceiver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.