Flavin-based fluorescent proteins (FbFPs) are a class of fluorescent reporters that undergo oxygen-independent fluorophore incorporation, which is an important advantage over green fluorescent proteins (GFPs) and mFruits. A FbFP derived from Chlamydomonas reinhardtii (CreiLOV) is a promising platform for designing new metal sensors. Some FbFPs are intrinsically quenched by metal ions, but the question of where metals bind and how to tune metal affinity has not been addressed. We used site-directed mutagenesis of CreiLOV to probe a hypothesized copper(II) binding site that led to fluorescence quenching. Most mutations changed the fluorescence quenching level, supporting the proposed site. One key mutation introducing a second cysteine residue in place of asparagine (CreiLOVN41C) significantly altered metal affinity and selectivity, yielding a zinc sensor. The fluorescence intensity and lifetime of CreiLOVN41C were reversibly quenched by Zn2+ ions with a biologically relevant affinity (apparent dissociation constant, K d, of 1 nM). Copper quenching of CreiLOVN41C was retained but with several orders of magnitude higher affinity than CreiLOV (K d = 0.066 fM for Cu2+, 5.4 fM for Cu+) and partial reversibility. We also show that CreiLOVN41C is an excellent intensity- and lifetime-based zinc sensor in aerobic and anaerobic live bacterial cells. Zn2+-induced fluorescence quenching is reversible over several cycles in Escherichia coli cell suspensions and can be imaged by fluorescence microscopy. CreiLOVN41C is a novel oxygen-independent metal sensor that significantly expands the current fluorescent protein-based toolbox of metal sensors and will allow for studies of anaerobic and low oxygen systems previously precluded by the use of oxygen-dependent GFPs.
As the second most abundant transition element and a crucial cofactor for many proteins, zinc is essential for the survival of all living organisms. To maintain required zinc levels and prevent toxic overload, cells and organisms have a collection of metal transport proteins for uptake and efflux of zinc. In bacteria, metal transport proteins are well defined for model organisms and many pathogens, but fewer studies have explored metal transport proteins, including those for zinc, in commensal bacteria from the gut microbiota. The healthy human gut microbiota is comprised of hundreds of species and among these, bacteria from the Lactobacillaceae family are well documented to have various beneficial effects on health. Furthermore, changes in dietary metal intake, such as for zinc and iron, are frequently correlated with changes in abundance of Lactobacillaceae. Few studies have explored zinc requirements and zinc homeostasis mechanisms in Lactobacillaceae, however. Here we applied a bioinformatics approach to identify and compare predicted zinc uptake and efflux proteins in several Lactobacillaceae genera of intestinal relevance. Few Lactobacillaceae had zinc transporters currently annotated in proteomes retrieved from the UniProt database, but protein sequence-based (BLASTP) homology searches revealed that high affinity ABC transporter genes are likely common, albeit with genus-specific domain features. P-type ATPase transporters are probably also common and some Lactobacillaceae genera code for predicted zinc efflux cation diffusion facilitators. This analysis confirms that Lactobacillaceae harbor genes for various zinc transporter homologs, and provides a foundation for systematic experimental studies to elucidate zinc homeostasis mechanisms in these bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.