Weak-acid preservatives, such as sorbic acid and acetic acid, are used in many low pH foods to prevent spoilage by fungi. The spoilage yeast Zygosaccharomyces bailii is notorious for its extreme resistance to preservatives and ability to grow in excess of legally-permitted concentrations of preservatives. Extreme resistance was confirmed in 38 strains of Z. bailii to several weak-acid preservatives. Using the brewing yeast Saccharomyces cerevisiae as a control, tests showed that Z. bailii was ~ 3-fold more resistant to a variety of weak-acids but was not more resistant to alcohols, aldehydes, esters, ethers, ketones, or hydrophilic chelating acids. The weak acids were chemically very diverse in structure, making it improbable that the universal resistance was caused by degradation or metabolism. Examination of Z. bailii cell populations showed that extreme resistance to sorbic acid, benzoic acid and acetic acid was limited to a few cells within the population, numbers decreasing with concentration of weak acid to < 1 in 1000. Re-inoculation of resistant sub-populations into weak-acid-containing media showed that all cells now possessed extreme resistance. Resistant sub-populations grown in any weak-acid preservative also showed ~ 100% cross-resistance to other weak-acid preservatives. Tests using 14C-acetic acid showed that weak-acid accumulation was much lower in the resistant sub-populations. Acid accumulation is caused by acid dissociation in the higher pH of the cytoplasm. Tests on intracellular pH (pHi) in the resistant sub-population showed that the pH was much lower, ~ pH 5.6, than in the sensitive bulk population. The hypothesis is proposed that extreme resistance to weak-acid preservatives in Z. bailii is due to population heterogeneity, with a small proportion of cells having a lower intracellular pH. This reduces the level of accumulation of any weak acid in the cytoplasm, thus conferring resistance to all weak acids, but not to other inhibitors.
The food spoilage yeast Zygosaccharomyces bailii shows great resistance to weak-acid preservatives, including sorbic acid (2, 4-hexadienoic acid). That extreme resistance was shown to be due to population heterogeneity, with a small sub-population of cells resistant to a variety of weak acids, probably caused by a lower internal pH reducing the uptake of all weak acids. In the present paper, it was found that resistant cells were extremely rare in exponential cultures, but increased by up to 8000-fold in stationary phase. Inoculation of media containing sorbic acid with a population of Z. bailii cells gave rise to what appeared to be a prolonged lag phase, suggesting adaptation to the conditions before the cells entered the period of exponential growth. However, the apparent lag phase caused by sorbic acid was largely due to the time required for the resistant sub-population to grow to detectable levels. The slow growth rate of the sub-population was identical to that of the final total population. The non-resistant bulk population remained viable for 3 days but had lost viability by 6 days and, during that time, there was no indication of any development of resistance in the bulk population. The sub-population growing in sorbic acid showed very high population diversity in colony size and internal pH. After removal of sorbic acid, the population rapidly reverted back to the normal, largely non-resistant, population distribution. The data presented suggest that a reevaluation of the lag phase in microbial batch culture is required, at least for the resistance of Z. bailii to sorbic acid. Furthermore, the significance of phenotypic diversity and heterogeneity in microbial populations is discussed more broadly with potential relevance to bacterial “persisters”, natural selection and evolution.
Zygosaccharomyces is a genus associated with the more extreme spoilage yeasts. Zygosaccharomyces spoilage yeasts are osmotolerant, fructophiles (preferring fructose), highly‐fermentative and extremely preservative‐resistant. Zygosaccharomyces bailii can grow in the presence of commonly‐used food preservatives, benzoic, acetic or sorbic acids, at concentrations far higher than are legally permitted or organolepically acceptable in foods. An inoculum effect has been described for many micro‐organisms and antimicrobial agents. The minimum inhibitory concentration (MIC) increases with the size of the inoculum; large inocula at high cell density therefore require considerably higher concentrations of inhibitors to prevent growth than do dilute cell suspensions. A substantial inoculum effect was found using sorbic acid against the spoilage yeast Zygosaccharomyces bailii NCYC 1766. The inoculum effect was not caused by yeasts metabolizing or adsorbing sorbic acid, thereby lowering the effective concentration; was not due to absence of cell–cell signals in dilute cell suspensions; and was not an artefact, generated by insufficient time for small inocula to grow. The inoculum effect appeared to be caused by diversity in the populations of yeast cells, with higher probability of sorbic acid‐resistant cells being present in large inocula. It was found that individual cells of Zygosaccharomyces bailii populations, grown as single cells in microtitre plate wells, were very diverse, varying enormously in resistance to sorbic acid. 26S ribosomal DNA sequencing did not detect differences between the small fraction of resistant ‘super cells’ and the average population. Re‐inoculation of the ‘super cells’ after overnight growth on YEPD showed a normal distribution of resistance to sorbic acid, similar to that of the original population. The resistance phenotype was therefore not heritable and not caused by a genetically distinct subpopulation. It was concluded that resistance of the spoilage yeast Zygosaccharomyces bailii to sorbic acid was due to the presence of small numbers of phenotypically resistant cells in the population. Copyright © 2000 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.