Bacteriocins are proteinaceous antibacterial compounds, produced by diverse bacteria, which have been successfully used as: (i) food biopreservative; (ii) anti-biofilm agents; and (iii) additives or alternatives to the currently existing antibiotics, to minimize the risk of emergence of resistant strains. However, there are several limitations that challenge the use of bacteriocins as biopreservatives/antibacterial agents. One of the most promising avenues to overcome these limitations is the use of nanoformulations. This review highlights the practical difficulties with using bacteriocins to control pathogenic microorganisms, and provides an overview on the role of nanotechnology in improving the antimicrobial activity and the physicochemical properties of these peptides.
Herein, enhancements of the yield and antimicrobial activity duration of the bacteriocin avicin A were accomplished using fractional factorial design (FFD) and layered double hydroxide (LDH) nanoparticles. Firstly, potential factors affecting bacteriocin production were selected for preliminary study. By a 25-1 FFD, high pH was shown to have a positive effect on avicin A yield, while temperature and duration of incubation, as well as peptone nitrogen sources all had negative effects. The highest bacteriocin production and activity (2560 BU/ml) were observed after 30 h of incubation at 30 °C, with pH adjustment at 7, and in the presence of 2 g mannitol as carbon source and 2.2 g peptone as nitrogen source. Secondly, avicin A nanocomposites with different LDH precursors were tested. Only avicin A-ZnAl-CO3 LDH demonstrated a potent antimicrobial activity against Lactobacillus sakei LMGT 2313 that lasted for at least 24 days, as compared to the values of 6 and 15 days observed with the free avicin A that has been stored at room temperature and at 4 °C, respectively. In conclusion, avicin A production and stability can be improved by manipulating the growth conditions and media composition, together with conjugation to LDHs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.