The previously reported carbon-11 labeled GluN2B PET radioligand C-Me-NB1 served as a starting point for derivatization and led to the successful development of a radiofluorinated analogue designated (R)-F-OF-Me-NB1. Given the short physical half-life of 20.3 min for carbon-11, (R)-F-OF-Me-NB1 with a physical half-life of 109.8 min would allow satellite distribution to nuclear medicine facilities without an on-site cyclotron. Two fluorinated Me-NB1 derivatives, OF-Me-NB1 and PF-Me-NB1, were synthesized. Upon chiral resolution, the respective enantiomers were radiolabeled with carbon-11 and assessed in a proof-of-concept study by applying in vitro autoradiography on rodent brain sections. Based on the autoradiograms, (R)-OF-Me-NB1 was selected for radiofluorination and preclinical evaluation by ex vivo autoradiography, PET imaging, biodistribution and metabolite studies in Wistar rats. To rule out off-target binding to the σ1 receptor, the brain uptake of (R)-F-OF-Me-NB1 in wild-type mice was compared with σ1 receptor knock-out mice. Autoradiographic assessment revealed that both enantiomers ofC-PF-Me-NB1 distributed homogenously across all brain regions on rodent brain sections. In contrast, the two enantiomers of C-OF-Me-NB1 exhibited an entirely different behaviour. While (S)-C-OF-Me-NB1 bound virtually to all brain regions with considerable σ1 receptor binding, (R)-C-OF-Me-NB1 exhibited high selectivity and specificity for the GluN2B-rich rat forebrain. These findings were confirmed for the radiofluorinated analogue (R)-C-OF-Me-NB1, which was obtained via copper-mediated radiofluorination in radiochemical yields of 13-25% and molar activities ranging from 61-168 GBq/µmol. PET imaging and biodistribution studies in Wistar rats indicated appropriate pharmacokinetic profile and high in vivo specific binding of (R)-F-OF-Me-NB1 as revealed by blocking studies with GluN2B-antagonist CP101,606. Off-target binding to the σ1 receptor was excluded by PET imaging with σ1 receptor knock-out mice. Receptor occupancy experiments with CP101,606 revealed a D50-value of 8.3 µmol/kg (intravenous). (R)-F-OF-Me-NB1 is a promising radiofluorinated probe that exhibits specificity and selectivity for the GluN2B-containing N-methyl-D-aspartate (NMDA) complex and enables in vivo target occupancy studies in rodents.
Despite the broad implications of the cannabinoid type 2 receptor (CB2) in neuroinflammatory processes, a suitable CB2-targeted probe is currently lacking in clinical routine. In this work, we synthesized 15 fluorinated pyridine derivatives and tested their binding affinities toward CB2 and CB1. With a sub-nanomolar affinity (K i for CB2) of 0.8 nM and a remarkable selectivity factor of >12,000 over CB1, RoSMA-18-d 6 exhibited outstanding in vitro performance characteristics and was radiofluorinated with an average radiochemical yield of 10.6 ± 3.8% (n = 16) and molar activities ranging from 52 to 65 GBq/μmol (radiochemical purity > 99%). [18F]RoSMA-18-d 6 showed exceptional CB2 attributes as demonstrated by in vitro autoradiography, ex vivo biodistribution, and positron emission tomography (PET). Further, [18F]RoSMA-18-d 6 was used to detect CB2 upregulation on postmortem human ALS spinal cord tissues. Overall, these results suggest that [18F]RoSMA-18-d 6 is a promising CB2 PET radioligand for clinical translation.
As part of our continuous efforts to develop a suitable 18 F-labeled PET radioligand with improved characteristics for imaging the N-methyl-D-aspartate receptors (NMDARs) subtype 2B (GluN1/2B), we investigated in the current work ortho-fluorinated (OF) and meta-fluorinated (MF) analogs of 18 F-para-fluorinated (PF)-NB1, a 3-benzazepine-based radiofluorinated probe. Methods: OF-NB1 and MF-NB1 were prepared using a multistep synthesis, and their binding affinities toward GluN2B subunits and selectivity over σ1 receptors (σ1Rs) were determined via competitive binding assays. 18 F-OF-NB1 was synthesized via copper-mediated radiofluorination and was evaluated in Wistar rats by in vitro autoradiography, PET imaging, ex vivo biodistribution, metabolite experiments, and receptor occupancy studies using CP-101,606, an established GluN2B antagonist. To determine in vivo selectivity, 18 F-OF-NB1 was validated in wild-type and σ1R knock-out mice. Translational relevance was assessed in autoradiographic studies using postmortem human brain tissues from healthy individuals and ALS patients, the results of which were corroborated by immunohistochemistry. Results: The binding affinity values for OF-NB1 and MF-NB1 toward the GluN2B subunits were 10.4 ± 4.7 and 590 ± 36 nM, respectively. For σ1R binding, OF-NB1 and MF-NB1 exhibited inhibition constants of 410 and 2,700 nM, respectively. OF-NB1, which outperformed MF-NB1, was radiolabeled with 18 F to afford 18 F-OF-NB1 in more than 95% radiochemical purity and molar activities of 192 ± 33 GBq/μmol. In autoradiography experiments, 18 F-OF-NB1 displayed a heterogeneous and specific binding in GluN2B subunit-rich brain regions such as the cortex, striatum, hypothalamus, and hippocampus. PET imaging studies in Wistar rats showed a similar heterogeneous uptake, and no brain radiometabolites were detected. A dose-dependent blocking effect was observed with CP-101,606 (0.5-15 mg/kg) and resulted in a 50% receptor occupancy of 8.1 μmol/kg. Postmortem autoradiography results revealed lower expression of the GluN2B subunits in ALS brain tissue sections than in healthy controls, in line with immunohistochemistry results. Conclusion: 18 F-OF-NB1 is a highly promising PET probe for imaging the GluN2B subunits of the N-methyl-D-aspartate receptor. It possesses utility for receptor occupancy studies and has potential for PET imaging studies in ALS patients and possibly other brain disorders.
The cannabinoid type 2 (CB2) receptor has emerged as a valuable target for therapy and imaging of immune-mediated pathologies. With the aim to find a suitable radiofluorinated analogue of the previously reported CB2 positron emission tomography (PET) radioligand [11C]RSR-056, 38 fluorinated derivatives were synthesized and tested by in vitro binding assays. With a K i (hCB2) of 6 nM and a selectivity factor of nearly 700 over cannabinoid type 1 receptors, target compound 3 exhibited optimal in vitro properties and was selected for evaluation as a PET radioligand. [18F]3 was obtained in an average radiochemical yield of 11 ± 4% and molar activities between 33 and 114 GBq/μmol. Specific binding of [18F]3 to CB2 was demonstrated by in vitro autoradiography and in vivo PET experiments using the CB2 ligand GW-405 833. Metabolite analysis revealed only intact [18F]3 in the rat brain. [18F]3 detected CB2 upregulation in human amyotrophic lateral sclerosis spinal cord tissue and may thus become a candidate for diagnostic use in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.