Engineered cell–nanostructured interfaces generated by vertically aligned silicon nanowire (SiNW) arrays have become a promising platform for orchestrating cell behavior, function, and fate. However, the underlying mechanism in SiNW‐mediated intracellular access and delivery is still poorly understood. This study demonstrates the development of a gene delivery platform based on conical SiNW arrays for mechanical cell transfection, assisted by centrifugal force, for both adherent and nonadherent cells in vitro. Cells form focal adhesions on SiNWs within 6 h, and maintain high viability and motility. Such a functional and dynamic cell–SiNW interface features conformational changes in the plasma membrane and in some cases the nucleus, promoting both direct penetration and endocytosis; this synergistically facilitates SiNW‐mediated delivery of nucleic acids into immortalized cell lines, and into difficult‐to‐transfect primary immune T cells without pre‐activation. Moreover, transfected cells retrieved from SiNWs retain the capacity to proliferate—crucial to future biomedical applications. The results indicate that SiNW‐mediated intracellular delivery holds great promise for developing increasingly sophisticated investigative and therapeutic tools.
Cells are able to perceive complex mechanical cues from their microenvironment, which in turn influences their development. Although the understanding of these intricate mechanotransductive signals is evolving, the precise roles of substrate microtopography in directing cell fate is still poorly understood. Here, UV nanoimprint lithography is used to generate micropillar arrays ranging from 1 to 10 µm in height, width, and spacing to investigate the impact of microtopography on mechanotransduction. Using mesenchymal stem cells (MSCs) as a model, stark pattern‐specific changes in nuclear architecture, lamin A/C accumulation, chromatin positioning, and DNA methyltransferase expression, are demonstrated. MSC osteogenesis is also enhanced specifically on micropillars with 5 µm width/spacing and 5 µm height. Intriguingly, the highest degree of osteogenesis correlates with patterns that stimulated maximal nuclear deformation which is shown to be dependent on myosin‐II‐generated tension. The outcomes determine new insights into nuclear mechanotransduction by demonstrating that force transmission across the nuclear envelope can be modulated by substrate topography, and that this can alter chromatin organisation and impact upon cell fate. These findings have potential to inform the development of microstructured cell culture substrates that can direct cell mechanotransduction and fate for therapeutic applications in both research and clinical sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.