The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.
Ligand-directed reactions allow chemical transformations at very low reactant concentrations and can thus provide access to efficient approaches for the post-translational modification of proteins. The development of these proximity-induced reactions is hampered by the number of appropriate ligands and the lack of design principles. Addressing these limitations, we report a proximity-induced labeling system which applies a moderate affinity peptide ligand. The design process was structure-guided and supported by molecular dynamics simulations. We show that selective protein labeling can be performed inside living cells enabling the subcellular translocation of a protein via ligand-directed chemistry for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.