The characteristics of heat and mass transmission, together with the features of fluid flow where the fluid is bounded by a stretching/shrinking sheet are influenced by the rotation angle of the sheet. In addition, the comparison between two conditions of stretching/shrinking sheet, known as: 1. normal position of sheet (zero rotation), 2. when it is inclined, contribute significant applications in science and technology, especially in experimental and theoretical research. According to this fact, this paper examines the impact of stretching and shrinking parameters acting on the inclined sheet, which contribute to the changes on the flow, heat and mass transfer in a Newtonian fluid. The variations of velocity, temperature and concentration of Newtonian fluid also being observed. The momentum, energy and concentration equations are acting as the controlling equations and written as partial differential equations (PDE). Subsequently, these equations were transformed into the ordinary differential equations (ODE) by using the similarity transformation. Finally, the ODE is solved numerically by bvp4c program in Matlab software. Dual numerical solutions are obtained in this paper, and presented in the figure form. The features of flow pattern, heat and mass transfer are described in details, together with the profiles of velocity, temperature and concentration of the related fluid. As a result, it is found that rate of skin friction coefficient, local Nusselt number, and local Sherwood number are reduced with the addition of inclination angle. On the other hand, velocity profile and the local Nusselt number are enhanced due to the impact of stretching rate at the inclined sheet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.