The first flavoenzyme-mimetic aerobic oxygenations catalyzed by N5-unmodified neutral flavin were realized with flavopeptides (Fl-Pep) rationally designed by computational calculations.
We recently developed a flavopeptide immobilized on polystyrene resin, Fl-Pep-PS, that could realize the first N5-unmodified neutral flavin (Fl)-catalyzed aerobic oxygenation reactions under non-enzymatic conditions. Although a key active species is assumed to be
the corresponding 4a-hydroperoxyflavin (Fl4aOOH) from the unprecedented activity and unique chemoselectivity, further circumstantial support would be helpful to be sure since spectroscopic evidence is difficult to obtain due to the compound's insolubility. In this article,
we report that the aerobic Baeyer-Villiger oxidation of a fused cyclobutanone, (±)-cis-bicyclo[3.2.0]hept-2-en-6-one (1), can be promoted with Fl-Pep-PS in a FMO-like chemoselectivity and regiodivergent manner via Fl-related catalytic intermediates,
which delivers strong evidence of the involvement of Fl4aOOH as an active species in Fl-Pep-PS-catalyzed aerobic oxygenation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.