Locking protocol is an essential component in resource management of real-time systems, which coordinates mutually exclusive accesses to shared resources from different tasks. Although the design and analysis of locking protocols have been intensively studied for sequential real-time tasks, there has been little work on this topic for parallel real-time tasks. In this paper, we study the analysis of parallel real-time tasks using spin locks to protect accesses to shared resources in three commonly used request serving orders (unordered, FIFO-order and priority-order). A remarkable feature making our analysis method more accurate is to systematically analyze the blocking time which may delay a task's finishing time, where the impact to the total workload and the longest path length is jointly considered, rather than analyzing them separately and counting all blocking time as the workload that delays a task's finishing time, as commonly assumed in the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.