The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.Detergent-insoluble cholesterol-and sphingolipid-rich microdomains, known as lipid rafts, of cellular membranes play important roles in signal transduction (29), protein sorting (12), and the budding and assembly of enveloped viruses (1,19,21,24). Human immunodeficiency virus type 1 (HIV-1) particles contain a high concentration of cholesterol and sphingomyelin (21, 33). Influenza virus also contains a large amount of detergent-insoluble complex and selects ordered lipid domains during its budding from the plasma membrane (24). Influenza virus hemagglutinin (HA) protein interacts with lipid raft directly via its transmembrane domain (25). Our recent studies indicate that lipid raft is also involved in the formation of hepatitis C virus (HCV) RNA replication complex (27).HCV is the causative pathogen of non-A, non-B hepatitis. The positive-sense, single-stranded 9.6-kb RNA genome encodes a polypeptide of 3,010 to 3,030 amino acids that is processed by host and viral proteases into 10 structural and nonstructural (NS) proteins (8,18). Most of the NS proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) of HCV were associated with the endoplasmic reticulum (ER) or other subcellular membranes when these proteins were...
Pathogenic bacteria and enteric viruses can be introduced into the environment via human waste discharge. Methods for rapid detection and quantification of human viruses and fecal indicator bacteria in water are urgently needed to prevent human exposure to pathogens through drinking and recreational waters. Here we describe the development of two real-time PCR methods to detect and quantify human adenoviruses and enterococci in environmental waters. For real-time quantification of enterococci, a set of primers and a probe targeting the 23S rRNA gene were used. The standard curve generated using Enterococcus faecalis genomic DNA was linear over a 7-log-dilution series. Serial dilutions of E. faecalis suspensions resulted in a lower limit of detection (LLD) of 5 CFU/reaction. To develop real-time PCR for adenoviruses, degenerate primers and a Taqman probe targeting a 163-bp region of the adenovirus hexon gene were designed to specifically amplify 14 different serotypes of human adenoviruses, including enteric adenovirus serotype 40 and 41. The standard curve generated was linear over a 5-log-dilution series, and the LLD was 100 PFU/reaction using serial dilutions of purified adenoviral particles of serotype 40. Both methods were optimized to be applicable to environmental samples. The real-time PCR methods showed a greater sensitivity in detection of adenoviruses in sewage samples than the viral plaque assay and in detection of enterococci in coastal waters than the bacterial culture method. However, enterococcus real-time PCR overestimated the number of bacteria in chlorinated sewage in comparison with the bacterial culture method. Overall, the ability via real-time PCR to detect enterococci and adenoviruses rapidly and quantitatively in the various environmental samples represents a considerable advancement and a great potential for environmental applications.
BackgroundHeat stress (HS) jeopardizes intestinal barrier functions and augments intestinal permeability in pigs. However, whether HS-induced maternal microbial and metabolic changes in primiparous sows during late gestation remains elusive. We present here, a study investigating the fecal microbial and metabolic responses in late gestational primiparous sows when exposed to HS.MethodsTwelve first-parity Landrace × Large White F1 sows were randomly assigned into two environmental treatments including the thermoneutral (TN) (18–22 °C; n = 6) and HS (28–32 °C; n = 6) conditions. Both treatments were applied from 85 d of gestation to farrowing. The serum and feces samples were collected on d 107 of gestation, for analyses including intestinal integrity biomarkers, high-throughput sequencing metagenomics, short-chain fatty acid (SCFA) profiles and nontargeted metabolomics.ResultsOur results show that HS group has higher serum Heat shock protein 70 (HSP70), lipopolysaccharide (LPS) and lipopolysaccharide-binding protein (LBP) levels. The gut microbial community can be altered upon HS by using β-diversity and taxon-based analysis. In particular, the relative abundance of genera and operational taxonomic units (OTUs) related to Clostridiales and Halomonas are higher in HS group, the relative abundance of genera and OTUs related to Bacteroidales and Streptococcus, however, are lower in HS group. Results of metabolic analysis reveal that HS lowers the concentrations of propionate, butyrate, total SCFA, succinate, fumarate, malate, lactate, aspartate, ethanolamine, β-alanine and niacin, whereas that of fructose and azelaic acid are higher in HS group. These metabolites mainly affect propanoate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism, β-alanine metabolism, pantothenate and CoA biosynthesis, tricarboxylic acid cycle (TCA) and nicotinate and nicotinamide metabolism. Additionally, correlation analysis between significant microbes and metabolites indicated that the HS-induced microbiota shift is likely the cause of changes of intestinal metabolism.ConclusionsTaken together, we reveal characteristic structural and metabolic changes in maternal gut microbiota as a result of late gestational HS, which could potentially provide the basis for further study on offspring gut microbiota and immune programming.
Ribavirin (RBV), a guanosine analogue, has been suggested to exert an antiviral action against hepatitis C virus (HCV) by causing lethal mutations and suppressing RNA polymerase in vitro, but the mechanism of its clinical therapeutic effects is currently unknown. To test the hypothesis that RBV could act both as an RNA mutagen and inhibit viral RNA synthesis in vivo, we studied the evolution of the nucleotide sequences of HCV RNA at the nonstructural (NS) 5B region in patients receiving RBV, placebo, or interferon alfa (IFN-alpha) monotherapy. The RBV group showed a slightly more accelerated evolution rate of HCV RNA quasispecies than either the IFN-alpha or placebo group. RBV caused preferentially A-to-G and U-to-A mutations. Interestingly, an NS5B amino acid 415 Phe-to-Tyr (F415Y) mutation emerged in all (5 of 5) patients infected with HCV genotype 1a during the RBV treatment. Subsequently, the parental 415F strain reemerged in some patients after the treatment was discontinued. The effect of the amino acid substitution at NS5B415 on HCV RNA replication was then investigated using an HCV subgenomic replicon in Huh7 cells. We showed that treatment of replicon cells with RBV reduced the HCV RNA level of NS5B415F replicon, but not NS5B415Y, in a dose-dependent manner. Thus, NS5B F415Y mutation represents an RBV-resistant variant. The 3-dimensional modeling and structure analysis of NS5B protein revealed that the 415th amino acid is located at the P helix region of the thumb subdomain, which may interact with the minor groove of the template-primer duplex in the putative RNA-binding cleft. In conclusion, RBV could work as a weak mutagen for HCV RNA in HCV-infected patients. Furthermore, the selection of an RBV-resistant variant with a single amino acid substitution in NS5B suggested that RBV may directly interact with HCV RNA polymerase, thus interfering with its enzymatic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.