Background
Magnetosomes (also called bacterial magnetic nanoparticles; BMPs) are biomembrane-coated nanoparticles synthesized by magnetotactic bacteria (MTB). Engineered BMPs fused to protein A (termed ∆F-BMP-FA) bind antibodies (Abs) automatically, and thus provide a series of potential advantages. However, no report so far has systematically evaluated functional applicability of genetically engineered BMPs.
Results
We evaluated properties of ∆F-BMP-FA, and developed/optimized culture methods for host strain
Magnetospirillum gryphiswaldense
ΔF-FA, ∆F-BMP-FA extraction conditions, conditions for Ab conjugation to ∆F-BMP-FA surface, and procedures for antigen detection using ∆F-BMP-FA/Ab complexes (termed BMP-A-Ab). Fed-batch culture for 36 h in a 42-L fermentor resulted in yields (dry weight) of 2.26 g/L for strain ΔF-FA and 62 mg/L for ∆F-BMP-FA. Optimal wash cycle number for ∆F-BMP-FA purification was seven, with magnetic separation following each ultrasonication step. Fusion of protein A to BMPs resulted in ordered arrangement of Abs on BMP surface. Linkage rate 962 μg Ab per mg ∆F-BMP-FA was achieved. BMP-A-Ab were tested for detection of pathogen (
Vibrio parahaemolyticus
; Vp) surface antigen and hapten (gentamicin sulfate). Maximal Vp capture rate for BMP-A-Ab was 90% (higher than rate for commercial immunomagnetic beads), and detection sensitivity was 5 CFU/mL. ∆F-BMP-FA also bound Abs from crude mouse ascites to form complex. Lowest gentamicin sulfate detection line for BMP-A-Ab was 0.01 ng/mL, 400-fold lower than that for double Ab sandwich ELISA, and gentamicin sulfate recovery rate for BMP-A-Ab was 93.2%.
Conclusion
Our findings indicate that engineered BMPs such as ∆F-BMP-FA are inexpensive, eco-friendly alternatives to commercial immunomagnetic beads for detection or diagnostic immunoassays, and have high Ab-conjugation and antigen-adsorption capacity.
Electronic supplementary material
The online version of this article (10.1186/s12951-019-0469-z) contains supplementary material, which is available to authorized users.
Variable domain of heavy chain antibody (nanobody, Nb) derived from camelids is an efficient reagent in monitoring environmental contaminants. Oriented conjugates of Nbs and bacterial magnetic particles (BMPs) provide new tools for the high-throughput immunoassay techniques. An anti-tetrabromobisphenol-A (TBBPA) Nb genetically integrated with an extra cysteine residue at the C terminus was immobilized onto BMPs enclosed within the protein membrane, using a heterobifunctional reagent N-succinimidyl-3-(2-pyridyldithiol) propionate, to form a solid BMP-Nb complex. A rapid and sensitive enzyme-linked immunosorbent assay (ELISA) based on the combination of BMP-Nb and T5-horseradish peroxidase was developed for the analysis of TBBPA, with a total assay time of 30 min and a half-maximum signal inhibition concentration (IC) of 1.04 ng/mL in PBS (pH 10, 10% methanol and 0.137 moL/L NaCl). This assay can even be performed in 100% methanol, with an IC value of 44.3 ng/mL. This assay showed quantitative recoveries of TBBPA from spiked canal water (114-124%) and sediment (109-113%) samples at 1.0-10 ng/mL (or ng/g (dw)). TBBPA residues determined by this assay in real canal water samples were below the limit of detection (LOD) and in real sediments were between
Chicken is an ideal model for simplified recombinant antibody library generation. It has been rarely been reported to apply chicken single-chain variable fragments (scFvs) in immunoassays for the detection of antibiotic and chemical contaminants in animal food products. In this study, the scFvs (S-1 and S-5) were isolated from a phage display library derived from a hyperimmunized chicken. The checker board titration revealed that the optimum concentrations of S-1 and S-5 were 0.78 μg/mL and 0.44 μg/mL respectively, to obtain OD450 around 1.0 at 5 μg/mL of Gent-OVA coating concentration. Both S-1 and S-5 exhibited negligible cross reactivity with kanamycin and amikacin. The 50% inhibitory concentration (IC50) of S-1 and S-5 were 12.418 ng/mL and 14.674 ng/mL respectively. In the indirect competitive ELISA (ic-ELISA), the limits of detection for S-1 and S-5 were 0.147 ng/mL and 0.219 ng/mL respectively. The mean recovery for Gent ranged from 60.91% to 118.09% with no more than 10.35% relative standard deviation (RSD) between the intra-assay and the inter-assay. These results indicate the chicken scFv based ic-ELISA method is suitable for the detection of Gent residue in animal derived edible tissues and milk.
Bacterial magnetic particles (BMPs) are an attractive
carrier material
for immunoassays because of their nanoscale size, dispersal ability,
and membrane-bound structure. Antitetrabromobisphenol-A (TBBPA) nanobodies
(Nbs) in the form of monovalence (Nb1), bivalence (Nb2), and trivalence
(Nb3) were biotinylated and immobilized onto streptavidin (SA)-derivatized
BMPs to construct the complexes of BMP-SA-Biotin-Nb1, -Nb2, and -Nb3,
respectively. An increasing order of binding capability of BMP-SA-Biotin-Nb1,
-Nb2, and -Nb3 to TBBPA was observed. These complexes showed high
resilience to temperature (90 °C), methanol (100%), high pH (12),
and strong ionic strength (1.37 M NaCl). A BMP-SA-Biotin-Nb3-based
enzyme linked immunosorbent assay (ELISA) for TBBPA dissolved in methanol
was developed, showing a half-maximum inhibition concentration (IC50) of 0.42 ng mL–1. TBBPA residues in landfill
leachate, sewage, and sludge samples determined by this assay were
in a range of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.