During the past decade, the electronic healthcare (e-health) system has been evolved into a more patient-oriented service with smaller and smarter wireless devices. However, these convenient smart devices have limited computing capacity and memory size, which makes it harder to protect the user's massive private data in the e-health system. Although some works have established a secure session key between the user and the medical server, the weaknesses still exist in preserving the anonymity with low energy consumption. Moreover, the misuse of biometric information in key agreement process may lead to privacy disclosure, which is irreparable. In this study, we design a dynamic privacy protection mechanism offering the biometric authentication at the server side whereas the exact value of the biometric template remains unknown to the server. And the user anonymity can be fully preserved during the authentication and key negotiation process because the messages transmitted with the proposed scheme are untraceable. Furthermore, the proposed scheme is proved to be semantic secure under the Real-or-Random Model. The performance analysis shows that the proposed scheme suits the e-health environment at the aspect of security and resource occupation.
In a smart grid, the power service provider enables the expected power generation amount to be measured according to current power consumption, thus stabilizing the power system. However, the data transmitted over smart grids are not protected, and then suffer from several types of security threats and attacks. Thus, a robust and efficient authentication protocol should be provided to strength the security of smart grid networks. As the Supervisory Control and Data Acquisition system provides the security protection between the control center and substations in most smart grid environments, we focus on how to secure the communications between the substations and smart appliances. Existing security approaches fail to address the performance-security balance. In this study, we suggest a mitigation authentication protocol based on Elliptic Curve Cryptography with privacy protection by using a tamper-resistant device at the smart appliance side to achieve a delicate balance between performance and security of smart grids. The proposed protocol provides some attractive features such as identity protection, mutual authentication and key agreement. Finally, we demonstrate the completeness of the proposed protocol using the Gong-Needham- Yahalom logic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.