Exposing nanoscale zerovalent iron (NZVI) to dissolved sulfide species improves its performance as a remediation agent. However, the impacts of sulfur dose and sulfidation time on morphology, sulfur content, reactivity, and selectivity of the resulting sulfidized NZVI (SNZVI) have not been systematically evaluated. We synthesized SNZVI using different sulfur doses and sulfidation times and measured their properties. The measured S/Fe molar ratio in the particles ([S/Fe] particle ) was 10−500 times lower than [S/Fe] dosed but was predictable based on [S/Fe] dosed × t sulfidation . The low sulfur content (0.02−0.65 mol % S/Fe) inhibited the reaction of SNZVI with water (up to 13-fold) and increased its reactivity with trichloroethene (TCE) (up to 14-fold) and its electron efficiency (up to 20-fold). A higher [S/ Fe] particle (0.86−1.13 mol % S/Fe) led to complex particle structures and lowered the resistance to electron transfer but did not improve the benefits realized at the lower S/Fe ratios. Adding small amounts of sulfur into NZVI led to more accumulation of acetylene, especially for low Fe/TCE conditions, suggesting that sulfur lowers the rate of hydrogenation of acetylene to ethene. These results show that [S/Fe] dosed × t sulfidation can be used to predict the measured S content in the particles and that affects reactivity, longevity, and electron selectivity, for post-SNZVI.
Using the GW method within many-body perturbation theory, we investigate the quasiparticle structures of defects, including oxygen vacancy, Ti interstitial, and hydroxyl groups, in the anatase TiO2 (101) surface. We find that the deep defect state in this surface observed experimentally, which is 1 eV below the Fermi level, originates from the σ bond formed between 3d orbitals of the two under-coordinated Ti atoms at the surface oxygen vacancy. Different from the density functional theory modified with on-site Coulomb terms (DFT + U), the GW method predicts that the localized polaron in anatase (101) is a shallow defect state close to the conduction band bottom. Polaronic states play the role in pinning the Fermi level of anatase near the conduction band bottom. Our GW calculations can explain satisfactorily the coexistence of shallow and deep defect states in anatase as observed in experiments. We also find that the conduction band edge of anatase is drawn down greatly after the filling of original empty Ti 3d orbitals by excess electrons, making the calculated bandgap of the reduced anatase agree well with the experiments. This significant difference in the bandgap between the intact and the reduced anatase is missed in DFT + U.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.