Paclitaxel is not effective for treatment of brain cancers because it cannot cross the blood-brain barrier (BBB) due to efflux by P-glycoprotein (P-gp). In this work, glutathione-coated poly-(lactide-co-glycolide) (PLGA) nanoparticles (NPs) of paclitaxel were developed for brain targeting for treatment of brain cancers. P-gp ATPase assay was used to evaluate the NP as potential substrates. The NP showed a particle size suitable for BBB permeation (particle size around 200 nm) and higher cellular uptake of the NP was demonstrated in RG2 cells. The P-gp ATPase assay suggested that the NP were not substrate for P-gp and would not be effluxed by P-gp present in the BBB. The in vitro release profile of the NP exhibited no initial burst release and showed sustained drug release. The proposed coated NP showed significantly higher cytotoxicity in RG2 cells compared with uncoated NP (p ≤ 0.05). Tubulin immunofluorescent study showed higher cell death by the NP due to increased microtubule stabilization. In vivo brain uptake study in mice showed higher brain uptake of the NP containing coumarin-6 compared with solution. The proposed brain-targeted NP delivery of paclitaxel could be an effective treatment for the brain cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.