We
examine the theoretical underpinnings of the seminal discoveries
by Reiner Sustmann about the ambiphilic nature of Huisgen’s
phenyl azide cycloadditions. Density functional calculations with
ωB97X-D and B2PLYP-D3 reproduce the experimental data and provide
insights into ambiphilic control of reactivity. Distortion/interaction-activation
strain and energy decomposition analyses show why Sustmann’s
use of dipolarophile ionization potential is such a powerful predictor
of reactivity. We add to Sustmann’s data set several modern
distortion-accelerated dipolarophiles used in bioorthogonal chemistry
to show how these fit into the orbital energy criteria that are often
used to understand cycloaddition reactivity. We show why such a simple
indicator of reactivity is a powerful predictor of reaction rates
that are actually controlled by a combination of distortion energies,
charge transfer, closed-shell repulsion, polarization, and electrostatic
effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.