Inland water bodies are crucial for supporting human life in various parts of the world. Therefore, it is essential to accurately monitor its spatiotemporal variations for better water management. The main objective of this study is to investigate the application of remote sensing data for quantifying the surface area changes and the impact of climatological variabilities over Lakes Mead and Chapala. Historical time series of monthly surface area dynamics were developed using Landsat 1-8 scenes and the climate variability was analysed using evaporation rate and precipitation. Results show that estimated surface water changes from satellite data agree well with independent data. A significant decline in surface area of about 40% since 2000 was found over the Lake Mead region. The relationship between surface area, precipitation and evaporation indicate that climatological factors have contributed to the lake surface area reduction. Lake Chapala’s surface area, on the other hand, has not fallen significantly despite negative trends in precipitation. It was found that human interactions with the lake are likely the main cause of surface area variations. The information about water surface area variation in this study is valuable for monitoring and characterising the predictability of water availability of the regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.