Knowing the rate of addition of new granule cells to the adult dentate gyrus is critical to understanding the function of adult neurogenesis. Despite the large number of studies of neurogenesis in the adult dentate gyrus, basic questions about the magnitude of this phenomenon have never been addressed. The S-phase marker bromodeoxyuridine (BrdU) has been extensively used in recent studies of adult neurogenesis, but it has been carefully tested only in the embryonic brain. Here, we show that a high dose of BrdU (300 mg/kg) is a specific, quantitative, and nontoxic marker of dividing cells in the adult rat dentate gyrus, whereas lower doses label only a fraction of the S-phase cells. By using this high dose of BrdU along with a second S-phase marker, [ 3 H]thymidine, we found that young adult rats have 9,400 dividing cells proliferating with a cell cycle time of 25 hours, which would generate 9,000 new cells each day, or more than 250,000 per month. Within 5-12 days of BrdU injection, a substantial pool of immature granule neurons, 50% of all BrdU-labeled cells in the dentate gyrus, could be identified with neuron-specific antibodies TuJ1 and TUC-4. This number of new granule neurons generated each month is 6% of the total size of the granule cell population and 30 -60% of the size of the afferent and efferent populations (West et al. [1991] Anat Rec 231:482-497; Mulders et al. [1997] J Comp Neurol 385:83-94). The large number of the adult-generated granule cells supports the idea that these new neurons play an important role in hippocampal function.
SummaryGlucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness1, 2. In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis3. Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking4, 5. Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioral components of the stress response. Using transgenic and radiation methods to specifically inhibit adult neurogenesis, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice compared with intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis6, 7. Relative to controls, neurogenesis-deficient mice showed increased food avoidance in a novel environment after acute stress, increased behavioral despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.