Acetylcholine (ACh) is an important neurotransmitter in the mammalian brain; it is implicated in arousal, learning, and other cognitive functions. Recent studies indicate that nicotinic receptors contribute to these cholinergic effects, in addition to the established role of muscarinic receptors. In the hippocampus, where cholinergic involvement in learning and memory is particularly well documented, alpha7 nicotinic acetylcholine receptor subunits (alpha7 nAChRs) are highly expressed, but their precise ultrastructural localization has not been determined. Here, we describe the results of immunogold labeling of serial ultrathin sections through stratum radiatum of area CA1 in the rat. Using both anti-alpha7 nAChR immunolabeling and alpha-bungarotoxin binding, we find that alpha7 nAChRs are present at nearly all synapses in CA1 stratum radiatum, with immunolabeling present at both presynaptic and postsynaptic elements. Morphological considerations and double immunolabeling indicate that GABAergic as well as glutamatergic synapses bear alpha7 nAChRs, at densities approaching those observed for glutamate receptors in CA1 stratum radiatum. Postsynaptically, alpha7 nAChRs often are distributed at dendritic spines in a perisynaptic annulus. In the postsynaptic cytoplasm, immunolabeling is associated with spine apparatus and other membranous structures, suggesting that alpha7 nAChRs may undergo dynamic regulation, with insertion into the synapse and subsequent internalization. The widespread and substantial expression of alpha7 nAChRs at synapses in the hippocampus is consistent with an important role in mediating and/or modulating synaptic transmission, plasticity, and neurodegeneration.
A new combination of tissue engineering techniques provides a simple and effective method for building aligned cellular biomaterials. Self-alignment of Schwann cells within a tethered type-1 collagen matrix, followed by removal of interstitial fluid produces a stable tissue-like biomaterial that recreates the aligned cellular and extracellular matrix architecture associated with nerve grafts. Sheets of this engineered neural tissue supported and directed neuronal growth in a co-culture model, and initial in vivo tests showed that a device containing rods of rolled-up sheets could support neuronal growth during rat sciatic nerve repair (5 mm gap). Further testing of this device for repair of a critical-sized 15 mm gap showed that, at 8 weeks, engineered neural tissue had supported robust neuronal regeneration across the gap. This is, therefore, a useful new approach for generating anisotropic engineered tissues, and it can be used with Schwann cells to fabricate artificial neural tissue for peripheral nerve repair.
Abstract-Chronic stress and spatial training have been proposed to affect hippocampal structure and function in opposite ways. Previous morphological studies that addressed structural changes after chronic restraint stress and spatial training were based on two-dimensional morphometry which does not allow a complete morphometric characterisation of synaptic features. Here, for the first time in such studies, we examined these issues by using three-dimensional (3-D) reconstructions of electron microscope images taken from thorny excrescences of hippocampal CA3 pyramidal cells. Ultrastructural alterations in postsynaptic densities (PSDs) of thorny excrescences receiving input from mossy fibre boutons were also determined, as were changes in numbers of multivesicular bodies (endosome-like structures) within thorny excrescences and dendrites. Quantitative 3-D data demonstrated retraction of thorny excrescences after chronic restraint stress which was reversed after water maze training, whilst water maze training alone increased thorny excrescence volume and number of thorns per thorny excrescence. PSD surface area was unaffected by restraint stress but water maze training increased both number and area of PSDs per thorny excrescence. In restrained rats that were water maze trained PSD volume and surface area increased significantly. The proportion of perforated PSDs almost doubled after water maze training and restraint stress. Numbers of endosome-like structures in thorny excrescences decreased after restraint stress and increased after water maze training. These findings demonstrate that circuits involving contacts between mossy fibre terminals and CA3 pyramidal cells at stratum lucidum level are affected conversely by water maze training and chronic stress, confirming the remarkable plasticity of CA3 dendrites. They provide a clear illustration of the structural modifications that occur after life experiences noted for their different impact on hippocampal function. © 2005 Published by Elsevier Ltd on behalf of IBRO.
The impact was examined of exposing rats to two life experiences of a very different nature (stress and learning) on synaptic structures in hippocampal area CA3. Rats were subjected to either (i) chronic restraint stress for 21 days, and/or (ii) spatial training in a Morris water maze. At the behavioural level, restraint stress induced an impairment of acquisition of the spatial response. Moreover, restraint stress and water maze training had contrasting impacts on CA3 synaptic morphometry. Chronic stress induced a loss of simple asymmetric synapses [those with an unperforated postsynaptic density (PSD)], whilst water maze learning reversed this effect, promoting a rapid recovery of stress-induced synaptic loss within 2-3 days following stress. In addition, in unstressed animals a correlation was found between learning efficiency and the density of synapses with an unperforated PSD: the better the performance in the water maze, the lower the synaptic density. Water maze training increased the number of perforated synapses (those with a segmented PSD) in CA3, both in stressed and, more notably, in unstressed rats. The distinct effects of stress and learning on CA3 synapses reported here provide a neuroanatomical basis for the reported divergent effects of these experiences on hippocampal synaptic activity, i.e. stress as a suppressor and learning as a promoter of synaptic plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.