OVERVIEW: The development of innovative methods to efficiently convert biomass to fuels and industrial chemicals is one of the grand challenges of the current age. n-Butanol is a versatile and sustainable platform chemical that can be produced from a variety of waste biomass sources. The emergence of new technologies for the production of fuels and chemicals from butanol will allow it to be a significant component of a necessarily dynamic and multifaceted solution to the current global energy crisis.IMPACT: The production of butanol from biomass and its utilization as a precursor to a diverse set of fuel products has the potential to reduce petroleum use worldwide. In concert with other emerging renewable technologies, significant reductions in greenhouse gas emissions may be realized. The rapid incorporation of renewables into the world fuel supply may also help to offset predicted increases in transportation fuel prices as the supply of oil declines. APPLICATIONS: Recent work has shown that butanol is a potential gasoline replacement that can also be blended in significant quantities with conventional diesel fuel. These efforts have transitioned to research focused on the development of viable methods for the production of an array of oxygenated and fully saturated jet and diesel fuels from butanol. The technologies discussed in this paper will help drive the commercialization and utilization of a spectrum of butanol based sustainable fuels that can supplement and partially displace conventional petroleum derived fuels. Published
Two cyanate ester resins and a polycarbonate thermoplastic have been synthesized from vanillin. The bisphenol precursors were prepared by both an electrochemical route as well as by a McMurry coupling reaction. 1,2-bis(4-cyanato-3-methoxyphenyl)ethene (6) had a high melting point of 237 °C and did not cure completely under a standard cure protocol. In contrast, the reduced version, 1,2-bis(4-cyanato-3-methoxyphenyl)ethane (7) melted at 190 °C and underwent complete cure to form a thermoset material with T g = 202 °C. 7 showed thermal stability up to 335 °C and decomposed via formation of phenolics and isocyanic acid. A polycarbonate was then synthesized from the reduced bisphenol by a transesterification reaction with diphenylcarbonate. The polymer had M n = 3588, M w /M n = 1.9, and a T g of 86 °C. TGA/FTIR data suggested that the polycarbonate decomposed via formation of benzodioxolanes with concomitant elimination of methane. The results show that vanillin is a useful precursor to both thermosetting resins and thermoplastics without significant modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.