This study was designed to compare functional effects of phosphorylation of muscle acetyl-CoA carboxylase (ACC) by adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) and by AMP-activated protein kinase (AMPK). Muscle ACC (272 kDa) was phosphorylated and then subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. Functional effects of phosphorylation were determined by measuring ACC activity at different concentrations of each of the substrates and of citrate, an activator of the enzyme. The maximal velocity (Vmax) and the Michaelis constants (Km) for ATP, acetyl-CoA, and bicarbonate were unaffected by phosphorylation by PKA. Phosphorylation by AMPK increased the Km for ATP and acetyl-CoA. Sequential phosphorylation by PKA and AMPK, first without label and second with label, appeared to reduce the extent of label incorporation, regardless of the order. The activation constant (Ka) for citrate activation was increased to the same extent by AMPK phosphorylation, regardless of previous or subsequent phosphorylation by PKA. Thus muscle ACC can be phosphorylated by PKA but with no apparent functional effects on the enzyme. AMPK appears to be the more important regulator of muscle ACC.
A method is described for quantitative measurement of lymphocyte transmembrane electrical potential difference (psi) by flow cytometric recording of the oxonol dye fluorescence of single cells. Both the simultaneous collection and analysis of multiple optical parameters and the use of a negatively charged oxonol probe allowed more accurate measurement of psi than may be obtained by bulk cell suspension techniques employing cationic voltage indicators. Mouse spleen and human blood lymphocyte psi was calculated to be -70 mV. T and B lymphocytes maintain a constant psi as extracellular K+ is varied from 2 to 10 mM and the deviation from K+ equilibrium potentials (EK) is shown to result from Na+ permeability. At [K+]o values greater than 10 mM, lymphocytes behave as K+ electrodes. Examination of lymphocyte subsets showed that hyperpolarization induced by the Ca2+ ionophore A23187 occurs only in T cells. This response was identified as activation of a Ca2+-sensitive K+ channel by pharmacologic manipulations. Hence, T cells depolarized by 4-aminopyridine (4-AP, 10 mM) were observed to return to resting psi by A23187-induced elevation of [Ca2+]i. Cells depolarized by quinine (100 microM) were unaffected by A23187. The Ca2+-activated channel does not contribute to resting psi in T cells since it may be selectively blocked by quinine (20 microM) or modulated by calmodulin antagonists (5 microM trifluperazine) without affecting resting psi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.