Morphologic changes associated with mitral valve endocardiosis in dogs were similar to those observed in humans with mitral valve prolapse. In dogs with mitral valve endocardiosis, gross changes in the valve complex may affect hemodynamics in the heart; alterations in the leaflet and chordal endothelium may contribute to pathogenesis of this disease.
Chronic use of chloroquine has been shown to induce numerous pathophysiological defects in the retina. This drug has the ability to alter pH of intracellular compartments and lysosomal function of the retinal pigment epithelium (RPE) and retinal neurons may constitute the basis of chloroquine retinopathy. The aim of the current study was to investigate pathogenic alterations in retinal cells continuously exposed to chloroquine using appropriate in vivo and in vitro models. Male hooded Lister rats were implanted with osmotic mini pumps which released chloroquine continuously over a period of seven days. The eyes were processed for electron microscopy and ultrastructural abnormalities determined in the neural retina and quantified using stereology in the retinal pigment epithelium (RPE). RPE were also exposed to chloroquine in vitro and lysosomal pH changes were investigated using a pH sensitive probe. Degradative capacity was also analysed using FITC labeled rod outer segments (ROS). Chloroquine-treated animals displayed several ultrastructural abnormalities including numerous membranous cytoplasmic bodies (MCBs) in retinal neurons. Cone photoreceptors displayed numerous MCBs although rods did not. The RPE of the treated groups all showed significantly higher numbers of lysosomal associated organelles (LAO) than the control group (p < 0.001). The in vitro experiments demonstrated chloroquine-mediated rises in lysosomal pH and an increase in lysosome/phagosome accumulation of ROS in the chloroquine treated group (p < 0.01). The current study demonstrates that chloroquine disrupts lysosomal function in retinal neurons and RPE. The evidence presented provides a clear pathogenic basis for the functional defects experienced by patients with chloroquine retinopathy.
The purpose of this study was to investigate the advanced glycation end-product (AGE)-inhibitory properties of aminoguanidine and to determine whether treatment in long-term diabetic rats can prevent basement membrane lesions of diabetic retinopathy. Four groups of male Wistar rats were studied: untreated diabetics injected with 45 mg/kg streptozotocin, aminoguanidine-treated diabetics, untreated controls, and aminoguanidine-treated controls. After 12 months' diabetes, the retinas from six animals were processed for electron microscopy or the retinal microvasculature was isolated using the trypsin digest technique. Stereological analysis was used to estimate quantitative ultrastructural changes in the retinal capillary-associated basement membrane. Serum AGEs were quantified by competitive AGE-ELISA, while microvascular-associated, immunoreactive AGEs were analysed on retinal trypsin digests. Aminoguanidine significantly reduced serum AGEs in the diabetic group (p < 0.001). In the retinal capillaries, there was a marked reduction in AGE immunoreactivity in the aminoguanidine-treated diabetics when compared with untreated diabetics. The surface area and absolute volume of the retinal capillary basement membrane were significantly increased in the diabetic rats when compared with non-diabetic controls (p < 0.001 and p < 0.001, respectively). Aminoguanidine treatment of diabetic rats protected against basement membrane expansion when compared with untreated diabetic counterparts. Aminoguanidine treatment prevents the development of diabetes-induced basement membrane expansion in retinal capillaries. The AGE inhibition properties of aminoguanidine suggest that AGEs play an important role in the complex pathogenesis of basement membrane thickening during diabetic retinopathy.
Diabetes meflitus was induced in male beagles by a single injection of an alloxan and streptozotocin cocktail and fasting blood sugar levels maintained between 15 and 20 mmol/l. Five years after induction of diabetes, three diabetic animals were sacrificed, together with sex and age-matched controls, and the retinas fixed for either transmission electron micro-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.