Abstract. Abrupt climate shifts of large amplitudes were common features of the Earth's climate as it transitioned into and out of the last full glacial state approximately 20 000 years ago, but their causes are not yet established. Midlatitude atmospheric dynamics may have played an important role in these climate variations through their effects on heat and precipitation distributions, sea ice extent, and wind-driven ocean circulation patterns. This study characterizes deglacial winter wind changes over the North Atlantic (NAtl) in a suite of transient deglacial simulations using the PlaSim Earth system model (run at T42 resolution) and the TraCE-21ka (T31) simulation. Though driven with yearly updates in surface elevation, we detect multiple instances of NAtl jet transitions in the PlaSim simulations that occur within 10 simulation years and a sensitivity of the jet to background climate conditions. Thus, we suggest that changes to the NAtl jet may play an important role in abrupt glacial climate changes. We identify two types of simulated wind changes over the last deglaciation. Firstly, the latitude of the NAtl eddy-driven jet shifts northward over the deglaciation in a sequence of distinct steps. Secondly, the variability in the NAtl jet gradually shifts from a Last Glacial Maximum (LGM) state with a strongly preferred jet latitude and a restricted latitudinal range to one with no single preferred latitude and a range that is at least 11∘ broader. These changes can significantly affect ocean circulation. Changes to the position of the NAtl jet alter the location of the wind forcing driving oceanic surface gyres and the limits of sea ice extent, whereas a shift to a more variable jet reduces the effectiveness of the wind forcing at driving surface ocean transports. The processes controlling these two types of changes differ on the upstream and downstream ends of the NAtl eddy-driven jet. On the upstream side over eastern North America, the elevated ice sheet margin acts as a barrier to the winds in both the PlaSim simulations and the TraCE-21ka experiment. This constrains both the position and the latitudinal variability in the jet at LGM, so the jet shifts in sync with ice sheet margin changes. In contrast, the downstream side over the eastern NAtl is more sensitive to the thermal state of the background climate. Our results suggest that the presence of an elevated ice sheet margin in the south-eastern sector of the North American ice complex strongly constrains the deglacial position of the jet over eastern North America and the western North Atlantic as well as its variability.
Reconstructions of historical climate changes indicate that surface air temperatures decreased over the preindustrial last millennium. Conflicting explanations have been proposed for the cause of the transition from the Medieval Climate Anomaly (MCA) in the early part of the last millennium to the Little Ice Age (LIA) near its end. The possible causes include volcanic emissions, total solar irradiance (TSI) variations, greenhouse gas concentration fluctuations, and orbital forcing variations. In the present paper, it is demonstrated that all of these climate forcings contribute significantly to simulated surface air temperature (SAT) and sea ice concentration changes over this period. On the other hand, simulated ocean heat content appears to respond significantly only to volcanic and TSI variations. In model simulations at T85 spectral resolution, TSI reductions and volcanic emissions together generate significant increases in sea ice extent in the Barents Sea, which is found to be responsible for most of the temperature reductions over northwestern Europe. TSI appears less important to Arctic sea ice and SAT changes in simulations at T42 spectral resolution, which are weaker than at T85 resolution. Such resolution dependence is attributed to differences in background conditions in the responses to these external climate forcings. Nonlinearities in the forcing responses and sensitivities to background conditions challenge the assumption that sensitivity tests for given forcings can be run independently. Additionally, it is demonstrated that an ensemble of model simulations is required to isolate forcing responses even over a period as long as the last millennium.
What: An international group of approximately 30 scientists with background and expertise in global and regional climate modeling, statistics, and climate proxy data discussed the state of the art, progress, and challenges in comparing global and regional climate simulations to paleoclimate data and reconstructions. The group focused on achieving robust comparisons in view of the uncertainties associated with simulations and paleo data.
Abstract. Abrupt climate shifts of large amplitude were common features of the Earth's climate as it transitioned into and out of the last full glacial state approximately twenty thousand years ago, but their causes are not yet established. Mid-latitudinal atmospheric dynamics may have played an important role in these oscillations through their effects on heat and precipitation distributions, sea ice extent, and wind-driven ocean circulation patterns. This study characterises deglacial winter wind changes over the North Atlantic (NAtl) in a suite of transient deglacial simulations we performed using the PlaSim earth system model, as well as in the TraCE-21ka simulation. We detect multiple instances of NAtl jet transitions that occur within 10 simulation years and a sensitivity of the jet to background climate conditions. Thus, we suggest that changes to the NAtl jet may play a critical role in abrupt glacial climate oscillations. We identify two types of simulated wind changes over the last deglaciation. Firstly, the latitude of the NAtl eddy-driven jet shifts northward over the deglaciation in a sequence of distinct steps. Secondly, the variability of the NAtl jet gradually shifts from a Last Glacial Maximum (LGM) state with a strongly preferred jet latitude and a restricted latitudinal range to one with no single preferred latitude and a range that is at least 11° broader. Changes to the position of the NAtl jet alter the location of the wind forcing driving oceanic surface gyres and the limits of sea ice extent, whereas a shift to a more variable jet reduces the effectiveness of the wind forcing at driving surface ocean transports. The processes controlling these two types of changes differ on the upstream and downstream ends of the NAtl eddy-driven jet. On the upstream side over eastern North America, the elevated ice sheet margin acts as a physical barrier to the winds in both the PlaSim simulations and the TraCE-21ka experiment. This constrains both the position and the latitudinal variability of the jet at LGM, so the jet shifts in sync with ice sheet margin changes. In contrast, the downstream side over the eastern NAtl is more sensitive to the thermal state of the background climate. Our results suggest that knowing the position of the south-eastern margin of the North American ice complex strongly constrains the deglacial position of the jet over eastern North America and the western North Atlantic as well as its variability.
Greenland climate variability is connected to internal and external sources of global climate forcing in six millennium simulations using Community Climate System Model, version 3. The external forcings employed are consistent with the protocols of Paleoclimate Modelling Intercomparison Project Phase 3. Many simulated internal climate modes are characterized over the years 850-1850, including the Atlantic meridional overturning circulation (AMOC), the Atlantic multidecadal oscillation (AMO), the east Atlantic pattern (EA), the El Niño-Southern Oscillation, the North Atlantic Oscillation (NAO), the North Atlantic sea ice extent, and the Pacific decadal oscillation (PDO). Lagged correlation and multivariate regression methods connect Greenland temperatures and precipitation to these internal modes and external sources of climate variability.Greenland temperature and precipitation are found to relate most strongly to North Atlantic sea ice extent, the AMO, and the AMOC, that are themselves strongly interconnected. Furthermore, approximately half of the multidecadal variability in Greenland temperature and precipitation are captured through linear relationships with volcanic aerosol optical depth, solar insolation (including total solar irradiance and local orbital variability), the NAO, the EA, and the PDO. Relationships are robust with volcanic aerosol optical depth, solar insolation, and an index related to latitudinal shifts of the North Atlantic jet. Differences attributable to model resolution are also identified in the results, such as lower variability in the AMOC and Greenland temperature in the higher-resolution simulations. Finally, a regression model is applied to simulations of the industrial period to show that natural sources alone only explain the variability in simulated Greenland temperature and precipitation up to the 1950s and 1970s, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.