Since the establishment of the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in North America and Europe, there has been a large, multi-group effort to characterize the composition and impact of the indigenous community of arthropod natural enemies attacking this invasive pest. In this review, we combine 98 indigenous natural enemy datasets spanning a variety of sampling methods, habitats, and geographic areas. To date, the vast majority of H. halys biological control research has focused on the egg stage, using sentinel egg masses to characterize indigenous parasitoid and predator communities and their contribution to H. halys egg mortality. Although egg parasitism and predation levels by indigenous natural enemies are low (typically <10% each) in most surveys, total egg mortality attributable to natural enemies can be higher (typically between 5 and 25%; up to 83%)—even though these values were likely underestimated in most cases because some mortality due to biological control was not recognized. In North America, where the most data are available, it appears that the relative prevalence of different indigenous parasitoid species varies among habitat types, particularly between crop and non-crop habitats. Predator species responsible for egg mortality are much less commonly identified, but appear to include a wide variety of generalist chewing and sucking predators. To date, studies of natural enemies attacking H. halys nymphs and adults are relatively rare. Based on our review, we identify a number of key research gaps and suggest several directions for future research
Reliable monitoring of the invasive Halyomorpha halys abundance, phenology and geographic distribution is critical for its management. Halyomorpha halys adult and nymphal captures on clear sticky traps and in black pyramid traps were compared in 18 states across the Great Lakes, Mid-Atlantic, Southeast, Pacific Northwest and Western regions of the United States. Traps were baited with commercial lures containing the H. halys pheromone and synergist, and deployed at field sites bordering agricultural or urban locations with H. halys host plants. Nymphal and adult captures in pyramid traps were greater than those on sticky traps, but captures were positively correlated between the two trap types within each region and during the early-, mid- and late season across all sites. Sites were further classified as having a low, moderate or high relative H. halys density and again showed positive correlations between captures for the two trap types for nymphs and adults. Among regions, the greatest adult captures were recorded in the Southeast and Mid-Atlantic on pyramid and sticky traps, respectively, with lowest captures recorded in the West. Nymphal captures, while lower than adult captures, were greatest in the Southeast and lowest in the West. Nymphal and adult captures were, generally, greatest during July–August and September–October, respectively. Trapping data were compared with available phenological models showing comparable population peaks at most locations. Results demonstrated that sticky traps offer a simpler alternative to pyramid traps, but both can be reliable tools to monitor H. halys in different geographical locations with varying population densities throughout the season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.