Fatty liver disease associated with chronic alcohol consumption or obesity/type 2 diabetes has emerged as a serious public health problem. Steatosis, accumulation of triglyceride in hepatocytes, is now recognized as a critical "first-hit" in the pathogenesis of liver disease. It is proposed that steatosis "primes" the liver to progress to more severe liver pathologies when individuals are exposed to subsequent metabolic and/or environmental stressors or "second-hits". Genetic risk factors can also influence the susceptibility and severity of fatty liver disease. Furthermore, oxidative stress, disrupted nitric oxide (NO) signaling, and mitochondrial dysfunctional are proposed to be key molecular events that accelerate or worsen steatosis and initiate progression to steatohepatitis and fibrosis. This review article will discuss the following topics regarding the pathobiology and molecular mechanisms responsible for fatty liver disease: 1) the "two-hit" or "multi-hit" hypothesis; 2) the role of mitochondrial bioenergetic defects and oxidant stress; 3) interplay between NO and mitochondria in fatty liver disease; 4) genetic risk factors and oxidative stress responsive genes; and 5) the feasibility of antioxidants for treatment.
NAFLD (non-alcoholic fatty liver disease), associated with obesity and the cardiometabolic syndrome, is an important medical problem affecting up to 20% of western populations. Evidence indicates that mitochondrial dysfunction plays a critical role in NAFLD initiation and progression to the more serious condition of NASH (non-alcoholic steatohepatitis). Herein we hypothesize that mitochondrial defects induced by exposure to a HFD (high fat diet) contribute to a hypoxic state in liver and this is associated with increased protein modification by RNS (reactive nitrogen species). To test this concept, C57BL/6 mice were pair-fed a control diet and HFD containing 35% and 71% total calories (1 cal≈4.184 J) from fat respectively, for 8 or 16 weeks and liver hypoxia, mitochondrial bioenergetics, NO (nitric oxide)-dependent control of respiration, and 3-NT (3-nitrotyrosine), a marker of protein modification by RNS, were examined. Feeding a HFD for 16 weeks induced NASH-like pathology accompanied by elevated triacylglycerols, increased CYP2E1 (cytochrome P450 2E1) and iNOS (inducible nitric oxide synthase) protein, and significantly enhanced hypoxia in the pericentral region of the liver. Mitochondria from the HFD group showed increased sensitivity to NO-dependent inhibition of respiration compared with controls. In addition, accumulation of 3-NT paralleled the hypoxia gradient in vivo and 3-NT levels were increased in mitochondrial proteins. Liver mitochondria from mice fed the HFD for 16 weeks exhibited depressed state 3 respiration, uncoupled respiration, cytochrome c oxidase activity, and mitochondrial membrane potential. These findings indicate that chronic exposure to a HFD negatively affects the bioenergetics of liver mitochondria and this probably contributes to hypoxic stress and deleterious NO-dependent modification of mitochondrial proteins.
Previously, RNA transcripts of cDNA clones of hepatitis C virus (HCV) genotypes 1a (strains H77, HCV-1, and HC-TN), 1b (HC-J4, Con1, and HCV-N), and 2a (HC-J6 and JFH1) were found to be infectious in chimpanzees. However, only JFH1 was infectious in human hepatoma Huh7 cells. We performed genetic analysis of HCV genotype 3a (strain S52) and 4a (strain ED43) prototype strains and generated full-length consensus cDNA clones (pS52 and pED43). Transfection of Huh7.5 cells with RNA transcripts of these clones did not yield cells expressing HCV Core. However, intrahepatic transfection of chimpanzees resulted in robust infection with peak HCV RNA titers of ϳ5.5 log 10 international units (IU)/ml. Genomic consensus sequences recovered from serum at the times of peak viral titers were identical to the sequences of the parental plasmids. Both chimpanzees developed acute hepatitis with elevated liver enzymes and significant necroinflammatory liver changes coinciding with detection of gamma interferon-secreting, intrahepatic T cells. However, the onset and broadness of intrahepatic T-cell responses varied greatly in the two animals, with an early (week 4) multispecific response in the ED43-infected animal (3 weeks before the first evidence of viral control) and a late (week 11) response with limited breadth in the S52-infected animal (without evidence of viral control). Autologous serum neutralizing antibodies were not detected during the acute infection in either animal. Both animals became persistently infected. In conclusion, we generated fully functional infectious cDNA clones of HCV genotypes 3a and 4a. Proof of functionality of all genes might further the development of recombinant cell culture systems for these important genotypes.Hepatitis C virus (HCV) is a small, enveloped virus with a single-stranded RNA genome, approximately 9.6 kb in length. The genome consists of 5Ј and 3Ј untranslated regions (UTRs) and a single open reading frame (ORF), encoding structural proteins (Core, E1, and E2), p7, and nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) (22). Due to significant genetic heterogeneity, HCV was classified into 7 major genotypes and numerous subtypes, differing Ͼ30% and Ͼ20%, respectively, at the nucleotide level and at the amino acid level. Strains/isolates differ in 2 to 10% at the nucleotide/ amino acid level, and quasispecies typically differ in up to 2% at the nucleotide/amino acid level (70). As a main cause of liver cirrhosis and hepatocellular carcinoma, chronic HCV infection poses a major public health burden. There is no vaccine available, and combination therapy with alpha interferon and ribavirin is characterized by many side effects and contraindications, as well as low efficacy (22). Research on the HCV life cycle and new therapeutics requires well-characterized experimental models and reagents representing the different virus variants.Chimpanzees, the only animal model of HCV infection mirroring immunopathogenesis and viral persistence observed in human infections (4, 80), can be ...
Obesity-related pathologies, such as nonalcoholic fatty liver disease, are linked to mitochondrial dysfunction and nitric oxide (NO) deficiency. Herein, we tested the hypothesis that a high-fat diet (HFD) modifies the liver mitochondrial proteome and alters proteins involved in NO metabolism, namely arginase 1 and endothelial NO synthase. Male C57BL/6 mice were fed a control or HFD and liver mitochondria were isolated for proteomics and reactive oxygen species measurements. Steatosis and hepatocyte ballooning were present in livers of HFD mice, with no pathology observed in the controls. HFD mice had increased serum glucose and decreased adiponectin. Mitochondrial reactive oxygen species was increased after 8 weeks in the HFD mice, but decreased at 16 weeks compared with the control, which was accompanied by increased uncoupling protein 2. Using proteomics, 22 proteins were altered as a consequence of the HFD. This cohort consists of oxidative phosphorylation, lipid metabolism, sulfur amino acid metabolism, and chaperone proteins. We observed a HFD-dependent increase in arginase 1 and decrease in activated endothelial NO synthase. Serum and liver nitrate + nitrite were decreased by HFD. In summary, these data demonstrate that a HFD causes steatosis, alters NO metabolism, and modifies the liver mitochondrial proteome; thus, NO may play an important role in the processes responsible for nonalcoholic fatty liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.