Context Cerebral cortical volume enlargement has been reported in 2- to 4-year-olds with autism. Little is known about the volume of sub-regions during this period of development. The amygdala is hypothesized to be abnormal in volume and related to core clinical features in autism. Objective To examine amygdala volume at 2 years with follow-up at 4 years of age in children with autism and to explore the relationship between amygdala volume and selected behavioral features of autism. Design Longitudinal magnetic resonance imaging study. Setting University medical setting. Participants Fifty-two autistic and 33 control (11 developmentally delayed, 22 typically developing) children between 18 and 35 months (2 years) of age followed up at 42 to 59 months (4 years) of age. Main Outcome Measures Amygdala volumes in relation to joint attention ability measured with a new observational coding system, the Social Orienting Continuum and Response scale; group comparisons including total tissue volume, sex, IQ and age as covariates. Results Amygdala enlargement was observed in subjects with autism at both 2 and 4 years of age. Significant change over time in volume was observed, though the rate of change did not differ between groups. Amygdala volume was associated with joint attention ability at age 4 years in subjects with autism. Conclusions The amygdala is enlarged in autism relative to controls by age 2 years but shows no relative increase in magnitude between 2 and 4 years of age. A significant association between amygdala volume and joint attention suggests that alterations to this structure may be linked to a core deficit of autism.
Craniosynostosis, the premature fusion of one or more cranial sutures, leads to grossly abnormal head shapes and pressure elevations within the brain caused by these deformities. To date, accepted treatments for craniosynostosis involve improving surgical skull shape aesthetics. However, the relationship between improved head shape and brain structure after surgery has not been yet established. Typically, clinical standard care involves the collection of diagnostic medical computed tomography (CT) imaging to evaluate the fused sutures and plan the surgical treatment. CT is known to provide very good reconstructions of the hard tissues in the skull but it fails to acquire good soft brain tissue contrast. This study intends to use magnetic resonance imaging to evaluate brain structure in a small dataset of sagittal craniosynostosis patients and thus quantify the effects of surgical intervention in overall brain structure. Very importantly, these effects are to be contrasted with normative shape, volume and brain structure databases. The work presented here wants to address gaps in clinical knowledge in craniosynostosis focusing on understanding the changes in brain volume and shape secondary to surgery, and compare those with normally developing children. This initial pilot study has the potential to add significant quality to the surgical care of a vulnerable patient population in whom we currently have limited understanding of brain developmental outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.