Immune-inflammatory conditions in the central nervous system (CNS) rely on molecular and cellular interactions which are homeostatically maintained to protect neural tissue from harm. The CD40–CD40L interaction upregulates key proinflammatory molecules, a function best understood in the context of infection, during which B-cells are activated via CD40 signaling to produce antibodies. However, the role of CD40 in neurological disease of non-infectious etiology is unclear. We review the role of CD40–CD40L in traumatic brain injury, Alzheimer’s Disease, Parkinson’s Disease, stroke, epilepsy, nerve injury, multiple sclerosis, ALS, myasthenia gravis and brain tumors. We also highlight therapeutic advancements targeting the CD40 system to either attenuate the neuroinflammatory response or leverage the downstream effects of CD40 signaling for direct tumor cell lysis.
ObjectiveEpilepsy affects ~50 million people worldwide causing significant medical, financial, and sociologic concerns for affected patients and their families. To date, treatment of epilepsy is primarily symptomatic management because few effective preventative or disease-modifying interventions exist. However, recent research has identified neurobiological mechanisms of epileptogenesis, providing new pharmacologic targets to investigate. The current scientific evidence remains scattered across multiple studies using different model and experimental designs. The review compiles different models of anti-epileptogenic investigation and highlights specific compounds with potential epileptogenesis-modifying experimental drugs. It provides a platform for standardization of future epilepsy research to allow a more robust compound analysis of compounds with potential for epilepsy prevention.MethodsPubMed, Ovid MEDLINE, and Web of Science were searched from 2007 to 2021. Studies with murine models of epileptogenesis and explicitly detailed experimental procedures were included in the scoping review. In total, 51 articles were selected from 14,983 and then grouped by five core variables: (1) seizure frequency, (2) seizure severity, (3) spontaneous recurrent seizures (SRS), (4) seizure duration, and (5) mossy fiber sprouting (MFS). The variables were differentiated based on experimental models including methods of seizure induction, treatment schedule and timeline of data collection. Data was categorized by the five core variables and analyzed by converting original treatment values to units of percent of its respective control.ResultsDiscrepancies in current epileptogenesis models significantly complicate inter-study comparison of potential anti-epileptogenic interventions. With our analysis, many compounds showed a potential to reduce epileptogenic characteristics defined by the five core variables. WIN55,212-2, aspirin, rapamycin, 1400W, and LEV + BQ788 were identified compounds with the potential of effective anti-epileptic properties.SignificanceOur review highlights the need for consistent methodology in epilepsy research and provides a novel approach for future research. Inconsistent experimental designs hinder study comparison, slowing the progression of treatments for epilepsy. If the research community can optimize and standardize parameters such as methods of seizure induction, administration schedule, sampling time, and aniMal models, more robust meta-analysis and collaborative research would follow. Additionally, some compounds such as rapamycin, WIN 55,212-2, aspirin, 1400W, and LEV + BQ788 showed anti-epileptogenic modulation across multiple variables. We believe they warrant further study both individually and synergistically.
Objectives: Many psychiatrists, and other providers alike, find difficulty integrating a culture-centered approach to clinical practice and navigating the challenges when they arise. We call attention to the ongoing challenges of addressing the cultural barriers between patient and physician.Methods: We present a case of an African patient with a rare case of Fahr's syndrome whose clinical diagnostic course was complicated by culture and language barriers.Results: The patient's hospital course was challenged by cultural and language barriers that were difficult to integrate into her care, likely contributing to a prolonged diagnostic course and hospitalization.Conclusions: Cultural considerations in medicine can enhance patientphysician relationships and ultimately strengthen clinical outcomes.
SARS-CoV-2 has an impact on the nervous system as a result of pathological cellular and molecular events at the level of vascular and neural tissue. Severe neurologic manifestations including stroke, ataxia, seizure, and depressed level of consciousness are prevalent in patients with SARS-CoV-2 infection. Although the mechanism is still unclear, SARS-CoV-2 has been associated with the pathogenesis of intravascular coagulation and angiotensin-converting enzyme-I, both exacerbating systemic inflammation and contributing to hypercoagulation or blood–brain barrier leakage, resulting in ischemic or hemorrhagic stroke. On the other hand, the SARS-CoV-2 spike protein in neural tissue and within the cerebrospinal fluid may induce neural dysfunction, resulting in neuroinflammation, which is exacerbated by peripheral and neural hypercytokinemia that can lead to neuronal damage and subsequent neuroinflammation. A deeper understanding of the fundamental biological mechanisms of neurologic manifestations in SARS-CoV-2 infection can pave the way to identifying a single biomarker or network of biomarkers to help target neuroprotective therapy in patients at risk for developing neurological complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.