The hippocampus undergoes changes with aging that impact neuronal function, such as synapse loss and altered neurotransmitter release. Nearly half of the aged population also develops deficits in spatial learning and memory. To identify age-related hippocampal changes that may contribute to cognitive decline, transcriptomic analysis of synaptosome preparations from adult (12 months) and aged (28 months) Fischer 344-Brown Norway rats assessed for spatial learning and memory was performed. Bioinformatic analysis identified the MHCI pathway as significantly upregulated with aging. Age-related increases in mRNAs encoding the MHCI genes RT1-A1, RT1-A2, and RT1-A3 was confirmed by qPCR in synaptosomes and in CA1 and CA3 dissections. Elevated levels of the MHCI cofactor (B2m), antigen-loading components (Tap1, Tap2, Tapbp), and two known MHCI receptors (PirB, Klra2) were also confirmed. Protein expression of MHCI was elevated with aging in synaptosomes, CA1, and DG, while PirB protein expression was induced in both CA1 and DG. MHCI expression was localized to microglia and neuronal excitatory postsynaptic densities, and PirB localized to neuronal somata, axons and dendrites. Induction of the MHCI antigen processing and presentation pathway in hippocampal neurons and glia may contribute to age-related hippocampal dysfunction by increasing neuroimmune signaling or altering synaptic homeostasis.
Myelin-associated inhibitor/NgR1 signaling has important roles in modulation of synaptic plasticity, with demonstrated effects on cognitive function. We have previously demonstrated that NgR1 and its ligands are upregulated in the hippocampus of aged rats with impaired spatial learning and memory, but it is unknown whether increased expression of these proteins indicates a potential increase in pathway signaling because NgR1 requires co-receptors for signal transduction through RhoA. Two co-receptor complexes have been identified to date, comprised of NgR1 and LINGO-1, and either p75 or TROY. In this study, we assessed the expression of LINGO-1, p75 and TROY, and the downstream effector RhoA in mature adult (12 months) and aged (26 months) male Fischer 344/Brown Norway hybrid rats classified as cognitively impaired or cognitively intact by Morris water maze testing. The hippocampal distribution of NgR1 and its co-receptors was assessed to determine whether receptor/co-receptor interaction, and therefore signaling through this pathway, is possible. Protein expression of LINGO-1, p75, TROY, and RhoA was significantly elevated in cognitively impaired, but not intact, aged rats compared to mature adults, and expression levels correlated significantly with water maze performance. Co-localization of NgR1 with LINGO-1, p75 and TROY was observed in hippocampal neurons of aged, cognitively impaired rats. Further, expression profiles of NgR1 pathway components were demonstrated to classify rats as cognitively intact or cognitively impaired with high accuracy. Together, this suggests that hippocampal induction of this pathway is a conserved phenomenon in cognitive decline that may impair learning and memory by suppressing neuronal plasticity.
Diabetic retinopathy is one of the leading causes of blindness in developed countries, and a majority of patients with type I and type II diabetes will develop some degree of vision loss despite blood glucose control regimens. The effects of different insulin therapy regimens on early metabolic, inflammatory and neuronal retinal disease processes such as retinal neuroinflammation and synapse loss have not been extensively investigated. This study compared 3 months non-diabetic and streptozotocin (STZ)-induced diabetic Sprague Dawley rats. Diabetic rats received either no insulin treatment, systemic insulin treatment beginning after 1 week uncontrolled diabetes (early intervention, 11 weeks on insulin), or after 1.5 months uncontrolled diabetes (late intervention, 6 weeks on insulin). Changes in both whole animal metabolic and retinal inflammatory markers were prevented by early initiation of insulin treatment. These metabolic and inflammatory changes were also normalized by the later insulin intervention. Insulin treatment begun 1 week after diabetes induction ameliorated loss of retinal synapse markers. Synapse markers and presumably synapse numbers were equivalent in uncontrolled diabetes and when insulin treatment began at 1.5 months of diabetes. These findings are in agreement with previous demonstrations that retinal synapses are lost within 1 month of uncontrolled diabetes and suggest that synapses are not regained with glycemic control and restoration of insulin signaling. However, increased expression of metabolic and inflammatory markers associated with diabetes was reversed in both groups of insulin treatment. This study also emphasizes the need for insulin treatment groups in diabetic retinopathy studies to provide a more faithful modeling of the human condition.
The myelin-associated inhibitor/Nogo-66 receptor 1 (NgR1) pathway directly functions in negative modulation of structural and electrophysiological synaptic plasticity. Previous work has established an important role of NgR1 pathway signaling in cognitive function, and we have demonstrated that multiple components of this pathway, including ligands, NgR1 co-receptors, and RhoA, are upregulated at the protein level specifically in cognitively impaired, but not age-matched cognitively intact aged rats. Recent studies have identified two novel endogenous NgR1 antagonists, LOTUS and LGI1, and an alternative co-receptor, ADAM22, which act to suppress NgR1 pathway signaling. To determine whether these endogenous NgR1-inhibiting proteins may play a compensatory role in age-related cognitive impairment by counteracting overexpression of NgR1 agonists and co-receptors, we quantified the expression of LOTUS, LGI1 and ADAM22 in hippocampal CA1, CA3 and DG subregions dissected from mature adult and aged rats cognitively phenotyped for spatial learning and memory by Morris water maze testing. We have found that endogenous inhibitors of NgR1 pathway action decrease significantly with aging and cognitive decline, and that lower expression levels correlate with declining cognitive ability, particularly in CA1 and CA3. These data suggest that decreased expression of NgR1-antagonizing proteins may exert a combinatorial effect with increased NgR1 signaling pathway components to result in abnormally strong suppression of synaptic plasticity in age-related cognitive impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.