Premise Within closed‐canopy forests, vertical gradients of light and atmospheric CO2 drive variations in leaf carbon isotope ratios, leaf mass per area (LMA), and the micromorphology of leaf epidermal cells. Variations in traits observed in preserved or fossilized leaves could enable inferences of past forest canopy closure and leaf function and thereby habitat of individual taxa. However, as yet no calibration study has examined how isotopic, micro‐ and macromorphological traits, in combination, reflect position within a modern closed‐canopy forest or how these could be applied to the fossil record. Methods Leaves were sampled from throughout the vertical profile of the tropical forest canopy using the 48.5 m crane at the Daintree Rainforest Observatory, Queensland, Australia. Carbon isotope ratios, LMA, petiole metric (i.e., petiole‐width2/leaf area, a proposed proxy for LMA that can be measured from fossil leaves), and leaf micromorphology (i.e., undulation index and cell area) were compared within species across a range of canopy positions, as quantified by leaf area index (LAI). Results Individually, cell area, δ13C, and petiole metric all correlated with both LAI and LMA, but the use of a combined model provided significantly greater predictive power. Conclusions Using the observed relationships with leaf carbon isotope ratio and morphology to estimate the range of LAI in fossil floras can provide a measure of canopy closure in ancient forests. Similarly, estimates of LAI and LMA for individual taxa can provide comparative measures of light environment and growth strategy of fossil taxa from within a flora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.