The rapid identification of bacteria and fungi directly from the blood of patients with suspected bloodstream infections aids in diagnosis and guides treatment decisions. The development of an automated, rapid, and sensitive molecular technology capable of detecting the diverse agents of such infections at low titers has been challenging, due in part to the high background of genomic DNA in blood. PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) allows for the rapid and accurate identification of microorganisms but with a sensitivity of about 50% compared to that of culture when using 1-ml wholeblood specimens. Here, we describe a new integrated specimen preparation technology that substantially improves the sensitivity of PCR/ESI-MS analysis. An efficient lysis method and automated DNA purification system were designed for processing 5 ml of whole blood. In addition, PCR amplification formulations were optimized to tolerate high levels of human DNA. An analysis of 331 specimens collected from patients with suspected bloodstream infections resulted in 35 PCR/ESI-MS-positive specimens (10.6%) compared to 18 positive by culture (5.4%). PCR/ESI-MS was 83% sensitive and 94% specific compared to culture. Replicate PCR/ESI-MS testing from a second aliquot of the PCR/ESI-MS-positive/culture-negative specimens corroborated the initial findings in most cases, resulting in increased sensitivity (91%) and specificity (99%) when confirmed detections were considered true positives. The integrated solution described here has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections.
Xenodiagnosis using Ixodes scapularis larvae was safe and well tolerated. Further studies are needed to determine the sensitivity of xenodiagnosis in patients with Lyme disease and the significance of a positive result. Clinical Trials Registration NCT01143558.
Ixodes pacificus ticks can harbor a wide range of human and animal pathogens. To survey the prevalence of tick-borne known and putative pathogens, we tested 982 individual adult and nymphal I. pacificus ticks collected throughout California between 2007 and 2009 using a broad-range PCR and electrospray ionization mass spectrometry (PCR/ESI-MS) assay designed to detect a wide range of tick-borne microorganisms. Overall, 1.4% of the ticks were found to be infected with Borrelia burgdorferi, 2.0% were infected with Borrelia miyamotoi and 0.3% were infected with Anaplasma phagocytophilum. In addition, 3.0% were infected with Babesia odocoilei. About 1.2% of the ticks were co-infected with more than one pathogen or putative pathogen. In addition, we identified a novel Anaplasmataceae species that we characterized by sequencing of its 16S rRNA, groEL, gltA, and rpoB genes. Sequence analysis indicated that this organism is phylogenetically distinct from known Anaplasma species with its closest genetic near neighbors coming from Asia. The prevalence of this novel Anaplasmataceae species was as high as 21% at one site, and it was detected in 4.9% of ticks tested statewide. Based upon this genetic characterization we propose that this organism be called ‘Candidatus Cryptoplasma californiense’. Knowledge of this novel microbe will provide awareness for the community about the breadth of the I. pacificus microbiome, the concept that this bacterium could be more widely spread; and an opportunity to explore whether this bacterium also contributes to human or animal disease burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.