We study the low-energy phenomenology of the little Higgs model. We first discuss the linearized effective theory of the ''littlest Higgs model'' and study the low-energy constraints on the model parameters. We identify sources of the corrections to low-energy observables, discuss model-dependent arbitrariness, and outline some possible directions of extensions of the model in order to evade the precision electroweak constraints. We then explore the characteristic signatures to test the model in the current and future collider experiments. We find that the CERN LHC has great potential to discover the new SU(2) gauge bosons and the possible new U(1) gauge boson to the multi-TeV mass scale. Other states such as the colored vectorlike quark T and doubly charged Higgs boson ⌽ ϩϩ may also provide interesting signals. At a linear collider, precision measurements on the triple gauge boson couplings could be sensitive to the new physics scale of a few TeV. We provide a comprehensive list of the linearized interactions and vertices for the littlest Higgs model in the appendices.
We show how LHC Higgs boson production and decay data can be used to extract gauge and fermion couplings of Higgs bosons. We show that very mild theoretical assumptions, which are valid in general multi-Higgs doublet models, are sufficient to allow the extraction of absolute values for the couplings rather than just ratios of the couplings. For Higgs masses below 200 GeV we find accuracies of 10 ÿ 40% for the Higgs boson couplings and total width after several years of LHC running. Slightly stronger assumptions on the Higgs gauge couplings even lead to a determination of couplings to fermions at the level of 10 ÿ 20%. We also study the sensitivity to deviations from SM predictions in several supersymmetric benchmark scenarios as a subset of the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.