Background: Mitochondrial calcium overload triggers permeability transition pore formation, fatty acid release, and necrotic cell death. Results: Pyrrophenone and KT195 inhibit cell death by blocking mitochondrial calcium uptake. Conclusion: Serine hydrolase inhibitors block mitochondrial calcium uptake but do not directly inhibit the enzyme releasing fatty acids during pore formation. Significance: Serine hydrolase inhibitors have potential to block necrotic cell death associated with disease.
The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H2O2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2.
Cytosolic phospholipase A2α (cPLA2α) mediates agonist-induced release of arachidonic acid from membrane phospholipid for production of eicosanoids. The activation of cPLA2α involves increases in intracellular calcium, which binds to the C2 domain and promotes cPLA2α translocation from the cytosol to membrane to access substrate. The cell permeable pyrrolidine-containing cPLA2α inhibitors including pyrrophenone have been useful to understand cPLA2α function. Although this serine hydrolase inhibitor does not inhibit other PLA2s or downstream enzymes that metabolize arachidonic acid, we reported that it blocks increases in mitochondrial calcium and cell death in lung fibroblasts. In this study we used the calcium indicators G-CEPIA1er and CEPIA2mt to compare the effect of pyrrophenone in regulating calcium levels in the endoplasmic reticulum (ER) and mitochondria in response to A23187 and receptor stimulation. Pyrrophenone blocked calcium release from the ER and concomitant increases in mitochondrial calcium in response to stimulation by ATP, serum and A23187. In contrast, ER calcium release induced by the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin was not blocked by pyrrophenone suggesting specificity for the calcium release pathway. As a consequence of blocking calcium mobilization, pyrrophenone inhibited serum-stimulated translocation of the cPLA2α C2 domain to Golgi. The ability of pyrrophenone to block ER calcium release is an off-target effect since it occurs in fibroblasts lacking cPLA2α. The results implicate a serine hydrolase in regulating ER calcium release and highlight the importance of careful dose-response studies with pyrrophenone to study cPLA2α function.
There is interest in developing inhibitors of human group III secreted phospholipase A2 (hGIII-sPLA2) because this enzyme plays a role in mast cell maturation. There are no potent inhibitors for hGIII-sPLA2 reported to date, so we adapted a fluorescence-based enzyme activity monitoring method to a high-throughput screening format. We opted to use an assay based on phospholipid substrate present in phospholipid vesicles since this matrix more closely resembles the natural substrate of hGIII-sPLA2, as opposed to phospholipid/detergent mixed micelles. The substrate is a phospholipid analogue containing BODIPY fluorophores dispersed as a minor component in vesicles of nonfluorescent phospholipids. Action of hGIII-sPLA2 liberates a free fatty acid from the phospholipid, leading to a reduction in quenching of the fluorophore and hence an increase in fluorescence. The assay uses optical detection in a 1536-well plate format with an excitation wavelength far away from the UV range so as to minimize false-positive library hits that result from quenching of the fluorescence. The high-throughput screen was successfully carried out on a library of 370,276 small molecules. Several hits were discovered, and data have been uploaded to PubChem. This study describes the first high-throughput optical screening assay for secreted phospholipase A2 inhibitors based on a phospholipid vesicle substrate.
Attempts to characterize, quantify, and/or modulate the activity of the secreted phospholipase A2 family of enzymes result from the diversity of physiological roles for which these enzymes have been implicated. The 1-palmitoyl-2-(10-pyrenedecanoyl)-phosphatidylglycerol (pyrenePG)-based fluorometric assay is a sensitive and readily adaptable method for further elucidating phospholipase function under various experimental conditions, as well as a tool for screening chemical libraries for potent inhibitors of this enzymatic activity. This assay is based on the observed difference in fluorescent emission of pyrene aggregated in vesicles compared to sequestered in monomeric form by binding to bovine serum albumin after lipolytic activity, thus allowing direct quantification of hydrolyzed fatty acids by the measurement of the corresponding monomeric emission intensity. The assay can be carried out in multiwell plates for high-throughput screening of compound libraries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.