It is usually assumed that pollen availability does not limit reproduction in wind-pollinated plants. Little evidence either supporting or contradicting this assumption exists, despite the importance of seed production to population persistence and growth. We investigated the role of pollen limitation in an invasive estuarine grass (Spartina alterniflora), with a manipulative pollen supplementation and exclusion experiment in areas of high population density and at the low-density leading edge of the invasion. We also quantified pollen deposition rates on stigmas and pollen traps along a windward to leeward gradient. We found pollen impoverishment at the low-density leading edge of a large invasion, causing an 8-fold reduction in seed set. We found 9-fold more pollen on stigmas of high-density plants than on those of lowdensity plants. Pollen deposition rates on stigmas and traps did not increase downwind of low-density plants but did increase downwind of high-density plants and dropped off precipitously across a gap that lacked pollen donors. The delay of appreciable numbers of seed caused by pollen limitation persists for decades until vegetative growth coalesces plants into continuous meadows, and this Allee effect has slowed the rate of spread of the invasion.
Summary1 Spartina alterniflora sets very little viable seed at the leading edges of an invasion in Willapa Bay, Washington, USA, where it was introduced c . 100 years ago. This largely outbreeding, rhizomatous grass recruits into previously unoccupied areas at low density, so young plants initially grow isolated from one another but eventually coalesce to form continuous meadows. 2 Isolated recruits set approximately one-tenth the seed of meadow plants at five sites, spread over the 230 km 2 of Willapa Bay mudflats, and this seed germinated at only one-third the rate observed in meadow plants. 3 The consistent patterns suggested that the low seed set in the isolated plants was largely due to the demographic effects of density. Differences between sites in the incidence and amount of seed set and germination rate indicated, however, that there was some environmental influence. 4 These data imply that plants in newly invaded, low-density areas produce little viable seed until rhizomatous growth brings them into close contact. This Allee effect could substantially reduce the rate of invasion.
Spartina alterniflora, smooth cordgrass, native to the eastern USA, was introduced into south San Francisco Bay ≈ 25 years ago. It has spread by purposeful introduction of rooted plants and dispersal of seeds on the tides. Previous work suggested that S. alterniflora was competitively superior to the native California cordgrass, S. foliosa, and that the two species hybridized. The present study determined the spread of S. alterniflora and S. foliosa × alterniflora hybrids in California and examined the degree of hybridization. We used nuclear DNA markers diagnostic for each species to detect the parental species and nine categories of hybrids. The California coast outside San Francisco Bay contained only the native species. All hybrid categories exist in the Bay, implying that several generations of crossing have occurred and that hybridization is bidirectional. Hybrids were found principally near sites of deliberate introduction of the exotic species. Where S. alterniflora was deliberately planted, we found approximately equal numbers of S. alterniflora and hybrid individuals; S. foliosa was virtually absent. Marshes colonized by water‐dispersed seed contained the full gamut of phenotypes with intermediate‐type hybrids predominating. The proliferation of hybrids could result in local extinction of S. foliosa. What is more, S. alterniflora has the ability to greatly modify the estuary ecosystem to the detriment of other native species and human uses of the Bay. To the extent that they share these engineering abilities, the proliferation of cordgrass hybrids could grossly alter the character of the San Francisco Bay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.