As our water reserves diminish, recycled water is increasingly being used for irrigation of turfgrasses. This study was conducted to determine the fate of nutrients contained in Type I recycled water used to irrigate turf and its effect on turf quality. Eighteen plots were randomly assigned to three replications of three irrigation treatments and two grasses. Irrigation treatments included Edwards Aquifer water applied at the evapotranspiration (ET) rate (EA), recycled water applied at the evapotranspiration rate (1XRW), and recycled water applied at 1.1 times the evapotranspiration rate to provide a leaching fraction (LFRW). Grasses included ‘Tifway’ bermudagrass (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt Davy) and ‘Jamur’ zoysiagrass (Zoysia japonica Steud.). Rain, runoff, leachate, and soil samples were collected and analyzed for total salts, Ca, Cu, Fe, Mg, Mn, N, K, Na, and Zn. The use of San Antonio Water System (SAWS) Type I recycled water had no adverse effect on turf quality but did result in a significant increase in soil electrical conductivity (EC) from 0.2518 dS m−1 in the EA treatment to 0.3132 and 0.3171 dS m−1 in the 1XRW and LFRW treatments, respectively. The Ca content increased from 134 108 and 135 467 mg L−1 in the EA and 1XRW treatments to 142 835 mg L−1 in the LFRW treatment. Na concentrations in the soil were not affected by the use of recycled water. The use of recycled water resulted in increased total salts (EC), Na and nitrate (NO3) concentrations in leachate passing below 76 cm. The EC increased from 0.425 dS m−1 for the EA treatment to 0.626 and 0.614 dS m−1 for the 1XRW and LFRW treatments, respectively. Na concentrations in leachate increased from 18.33 mg L−1 for the EA treatment to 49.10 and 52.91 mg L−1 for the 1XRW and LFRW treatments, respectively. Runoff water from treatments irrigated with recycled water exhibited a trend of increased EC, Ca, Mn, and Na.
Stainless steel circular mirrors were employed in an enrichment plan for 105 singly housed male African green monkeys. We observed 25 randomly selected males to measure mirror use and to assess the mirrors' effectiveness as an enrichment item. We conducted additional mirror-use surveys on all 105 males using fingerprint accumulation as an indicator (rated on a scale of 0 to 4). Use was defined as either being in contact with the mirror (contact use (CU)) or looking directly into the mirror without contact (non-contact use (NC)). Mirror-use data were collected 10 months after the initial introduction of the mirrors and again at 16 months. The two time points were compared by paired t-tests. No significant difference in use was found between the two data collection points. On average, the monkeys used the mirrors 5.2% of the total time intervals recorded (approximately 3 min/hr). Results from the five fingerprint-accumulation surveys showed that 102 of 105 males (97%) had CU with their mirrors over the survey points. Based on the sustained use of the mirrors over a 6-month period, we concluded that the mirrors were an effective enrichment tool that the vast majority of our monkeys routinely used. Habituation did not appear to occur even a year after the mirrors were introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.