A polymerase chain reaction (PCR) assay employing species-specific primers was developed to differentiate Erysiphe necator from other powdery mildews common in the northwest United States. DNA was extracted from mycelia, conidia, and/or chasmothecia that were collected from grape leaves with a Burkard cyclonic surface sampler. To differentiate E. necator from other erysiphaeceous fungi, primer pairs Uncin144 and Uncin511 were developed to select unique sequences of the internal transcribed spacer regions of E. necator. Using these primers in PCR amplifications, a 367-bp amplicon specific to E. necator was generated, but no amplicons were generated from other erysiphaceous species collected from 48 disparate hosts representing 26 vascular plant families. The PCR limit of detection was one to five conidia of E. necator placed directly into reaction mixtures or 100 to 250 conidia placed on glass rods coated with silicon grease. During field studies, this PCR assay facilitated the detection of E. necator inoculum in air samples within hours of sample rod collection and prior to disease onset. Amplification of E. necator DNA did not occur when the PCR assay was conducted on vineyard air samples collected while grapes were dormant or during periods when vine growth occurred but E. necator remained dormant. The initial PCR detection of E. necator of the season occurred during seasonal ascospore releases caused by precipitation events between bud burst and the prebloom period during the 3 years of the study. Detection ceased for 7 to 11 days following ascospore release and then resumed several days prior to the observance of microscopic symptoms and signs of powdery mildew in the field. Results of this study represent the initial step toward the goal of incorporating an inoculum availability component into current and future grapevine powdery mildew risk assessment models.
This study evaluated detection methods for Salmonella Typhi (S. Typhi) in the environment, to establish a novel pathway from field sampling to isolation of viable organisms and molecular confirmation from complex environmental samples, thus enabling environmental surveillance of typhoid.Methods and Results: Multiple media were assessed using clinical isolates from the Public Health England's (PHE) Culture collection. The culture pathway selected consisted of a primary 2% bile broth and secondary Selenite F broth, followed by modified Chromogenic Agar for Salmonella Esterase (mCASE). A qPCR assay was adapted from a validated S. Typhi PCR panel for confirmation of isolates, with comparison to biochemical and serological tests showing good specificity. Sampling locations in Blantyre, Malawi were used to compare sampling methods. Viable S. Typhi were isolated from a mixture of trap and grab river water samples on six occasions. Conclusions:Culture of viable S. Typhi from environmental samples was possible using effective capture and culture techniques.Significance and impact of study: Whilst several studies have attempted to detect S. Typhi from the environment, this is the first successful attempt to isolate the organism from river water since the 1980s. Supplementing clinical data with environmental screening offers the potential for enhanced surveillance, which might inform interventions and assess vaccination programmes.
Background: The Malawi-Liverpool Wellcome Trust Clinical Research Programme (MLW) has undertaken sentinel surveillance of bloodstream infection and meningitis at Queen Elizabeth Central Hospital (QECH), Blantyre, Malawi for 20 years. Previously, three epidemics of Salmonella bloodstream infection have been identified. Here we provide updated surveillance data on invasive non-typhoidal Salmonella disease from 2011 – 2019. Methods: Surveillance data describing trends in invasive non-typhoidal Salmonella disease and associated antimicrobial susceptibility profiles are presented for the period January 2011 – December 2019. Results: Between January 2011-December 2019, 128,588 blood cultures and 40,769 cerebrospinal fluid cultures were processed at MLW. Overall, 1.00% of these were positive for S. Typhimurium, 0.10% for S. Enteritidis, and 0.05% positive for other Salmonella species. Estimated minimum incidence of invasive non-typhoidal Salmonella (iNTS) disease decreased from 21/100,000 per year in 2011 to 7/100,000 per year in 2019. Over this period, 26 confirmed cases of Salmonella meningitis were recorded (88.5% S. Typhimurium). Between 2011-2019 there was a substantial decrease in proportion of S. Typhimurium (78.5% to 27.7%) and S. Enteritidis (31.8% in 2011 to 0%) that were multidrug-resistant. Resistance to fluoroquinolones and third-generation generation cephalosporins (3GC) remained uncommon, however 3GC increased amongst Salmonella spp. and S. Typhimurium in the latter part of the period. Conclusions: The total number of iNTS bloodstream infections decreased between 2011-2019. Although the number multidrug resistance (MDR) S. Typhimurium and S. Enteritidis isolates has fallen, the number of MDR isolates of other Salmonella spp. has increased, including 3GC isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.