The land and ocean absorb on average over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 “sinks” are modulated by climate change and variability. Here we use a suite of nine Dynamic Global Vegetation Models (DGVMs) 5 and four Ocean Biogeochemical General Circulation Models (OBGCMs) to quantify the global and regional climate and atmospheric CO2 – driven trends in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, attribute these trends to underlying processes, and quantify the uncertainty and level of model agreement. The models were forced with reconstructed climate fields and observed 10 global atmospheric CO2; Land Use and Land Cover Changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4±0.7 PgCyr−1 with a small significant trend of −0.06±0.03 PgCyr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2±0.2 PgCyr−1 with a trend in the net C uptake that 15 is indistinguishable from zero (−0.01±0.02 PgCyr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small trend of −0.02±0.01 PgCyr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink 20 are driven by increasing net primary production (NPP) whose statistically significant trend of 0.22±0.08 PgCyr−2 exceeds a significant trend in heterotrophic respiration of 0.16±0.05 PgCyr−2 – primarily as a consequence of wide-spread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04±0.01 PgCyr−2), with almost no 25 trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counteract the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, and on the influence of land use and land cover changes on regional trends
Seasonal variations of atmospheric carbon dioxide (CO2) in the Northern Hemisphere have increased since the 1950s, but sparse observations have prevented a clear assessment of the patterns of long-term change and the underlying mechanisms. We compare recent aircraft-based observations of CO2 above the North Pacific and Arctic Oceans to earlier data from 1958 to 1961 and find that the seasonal amplitude at altitudes of 3 to 6 km increased by 50% for 45° to 90°N but by less than 25% for 10° to 45°N. An increase of 30 to 60% in the seasonal exchange of CO2 by northern extratropical land ecosystems, focused on boreal forests, is implicated, substantially more than simulated by current land ecosystem models. The observations appear to signal large ecological changes in northern forests and a major shift in the global carbon cycle.
The global ocean is a significant sink for anthropogenic carbon (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a global scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air–sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the global ocean inventory of anthropogenic carbon in 2010 of 155 ± 31 PgC (±20% uncertainty). This estimate includes a broad range of values, suggesting that a combination of approaches is necessary in order to achieve a robust quantification of the ocean sink of anthropogenic CO2
Summary Atmospheric carbon dioxide concentration ([CO2]) is increasing, which increases leaf‐scale photosynthesis and intrinsic water‐use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2]‐driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre‐industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.