Although some research in the past has examined how physical limitations in strength or flexibility affect a golfer's performance, the performance outcome most measured was driving distance. Currently, there are no data that have examined the relationship between selected strength and flexibility variables and golf swing faults. The purpose of this study was to examine the relationship between Titleist Performance Institute (TPI) level 1 movement screen variables and 14 common golf swing faults. Thirty-six male and female golfers (mean age, 25.4 ± 9.9 years; height, 175.9 ± 16.2 cm; mass, 76.2 ± 14.6 kg; handicap, 14.2 ± 10.4) participated. Twelve physical tests of strength, flexibility, and balance were assessed using the TPI level 1 golf fitness screening tool. Golfers then hit 4 golf shots (with a 5-iron) while being videoed, and those were then analyzed for 14 different golf swing faults (using V1Pro software). Three significant associations between a physical limitation and a particular golf swing fault were found: toe touch and early hip extension (p = 0.015), bridge on right side with both early hip extension (p = 0.050), and loss of posture (p = 0.028). In addition, an odds ratio showed that when a golfer could not overhead deep squat or single leg balance on left side, they were 2-3 times more likely to exhibit a early hip extension, loss of posture, or slide during the golf swing, as compared with those who could perform a correct overhead deep squat. Based on our findings, it is important for the golf fitness professional to particularly address a golfer's core strength, balance, and hamstring flexibility to help avoid common golf swing faults, which affect a golfer's ball striking ability and ultimately their performance.
Since labral pathology in professional golfers has been reported, and such pathology has been associated with internal/external hip rotation, quantifying the rotational velocity of the hips during the golf swing may be helpful in understanding the mechanism involved in labral injury. Thus, the purpose of this study was to determine the peak internal/external rotational velocities of the thigh relative to the pelvis during the golf swing. Fifteen female, collegiate golfers participated in the study. Data were acquired through high-speed three dimensional (3-D) videography using a multi-segment bilateral marker set to define the segments, while the subjects completed multiple repetitions of a drive. The results indicated that the lead hip peak internal rotational velocity was significantly greater than that of the trail hip external rotational velocity (p = 0.003). It appears that the lead hip of a golfer experiences much higher rotational velocities during the downswing than that of the trail hip. In other structures, such as the shoulder, an increased risk of soft tissue injury has been associated with high levels of rotational velocity. This may indicate that, in golfers, the lead hip may be more susceptible to injury such as labral tears than that of the trailing hip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.