SummaryBackgroundGlobal inequalities in access to health care are reflected in differences in cancer survival. The CONCORD programme was designed to assess worldwide differences and trends in population-based cancer survival. In this population-based study, we aimed to estimate survival inequalities globally for several subtypes of childhood leukaemia.MethodsCancer registries participating in CONCORD were asked to submit tumour registrations for all children aged 0–14 years who were diagnosed with leukaemia between Jan 1, 1995, and Dec 31, 2009, and followed up until Dec 31, 2009. Haematological malignancies were defined by morphology codes in the International Classification of Diseases for Oncology, third revision. We excluded data from registries from which the data were judged to be less reliable, or included only lymphomas, and data from countries in which data for fewer than ten children were available for analysis. We also excluded records because of a missing date of birth, diagnosis, or last known vital status. We estimated 5-year net survival (ie, the probability of surviving at least 5 years after diagnosis, after controlling for deaths from other causes [background mortality]) for children by calendar period of diagnosis (1995–99, 2000–04, and 2005–09), sex, and age at diagnosis (<1, 1–4, 5–9, and 10–14 years, inclusive) using appropriate life tables. We estimated age-standardised net survival for international comparison of survival trends for precursor-cell acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML).FindingsWe analysed data from 89 828 children from 198 registries in 53 countries. During 1995–99, 5-year age-standardised net survival for all lymphoid leukaemias combined ranged from 10·6% (95% CI 3·1–18·2) in the Chinese registries to 86·8% (81·6–92·0) in Austria. International differences in 5-year survival for childhood leukaemia were still large as recently as 2005–09, when age-standardised survival for lymphoid leukaemias ranged from 52·4% (95% CI 42·8–61·9) in Cali, Colombia, to 91·6% (89·5–93·6) in the German registries, and for AML ranged from 33·3% (18·9–47·7) in Bulgaria to 78·2% (72·0–84·3) in German registries. Survival from precursor-cell ALL was very close to that of all lymphoid leukaemias combined, with similar variation. In most countries, survival from AML improved more than survival from ALL between 2000–04 and 2005–09. Survival for each type of leukaemia varied markedly with age: survival was highest for children aged 1–4 and 5–9 years, and lowest for infants (younger than 1 year). There was no systematic difference in survival between boys and girls.InterpretationGlobal inequalities in survival from childhood leukaemia have narrowed with time but remain very wide for both ALL and AML. These results provide useful information for health policy makers on the effectiveness of health-care systems and for cancer policy makers to reduce inequalities in childhood cancer survival.FundingCanadian Partnership Against Cancer, Cancer Focus Northern Ireland, Cancer In...
The distribution of ovarian cancer histology varies widely worldwide. Type I epithelial, germ cell and sex cord-stromal tumours are generally associated with higher survival than type II tumours, so the proportion of these tumours may influence survival estimates for all ovarian cancers combined. The distribution of histological groups should be considered when comparing survival between countries and regions.
Chronic diseases have a major impact on populations and healthcare systems worldwide. Administrative health data are an ideal resource for chronic disease surveillance because they are population-based and routinely collected. For multi-jurisdictional surveillance, a distributed model is advantageous because it does not require individual-level data to be shared across jurisdictional boundaries. Our objective is to describe the process, structure, benefits, and challenges of a distributed model for chronic disease surveillance across all Canadian provinces and territories (P/Ts) using linked administrative data. The Public Health Agency of Canada (PHAC) established the Canadian Chronic Disease Surveillance System (CCDSS) in 2009 to facilitate standardized, national estimates of chronic disease prevalence, incidence, and outcomes. The CCDSS primarily relies on linked health insurance registration files, physician billing claims, and hospital discharge abstracts. Standardized case definitions and common analytic protocols are applied to the data for each P/T; aggregate data are shared with PHAC and summarized for reports and open access data initiatives. Advantages of this distributed model include: it uses the rich data resources available in all P/Ts; it supports chronic disease surveillance capacity building in all P/Ts; and changes in surveillance methodology can be easily developed by PHAC and implemented by the P/Ts. However, there are challenges: heterogeneity in administrative databases across jurisdictions and changes in data quality over time threaten the production of standardized disease estimates; a limited set of databases are common to all P/Ts, which hinders potential CCDSS expansion; and there is a need to balance comprehensive reporting with P/T disclosure requirements to protect privacy. The CCDSS distributed model for chronic disease surveillance has been successfully implemented and sustained by PHAC and its P/T partners. Many lessons have been learned about national surveillance involving jurisdictions that are heterogeneous with respect to healthcare databases, expertise and analytical capacity, population characteristics, and priorities.
BackgroundWe present a national surveillance report on malignant primary brain and other central nervous system (CNS) tumors diagnosed in the Canadian population in 2009–2013.MethodsPatients were identified through the Canadian Cancer Registry, an administrative dataset that includes cancer incidence data from all provinces/territories in Canada. Tumor types were classified by site and histology using the definitions from the Central Brain Tumor Registry of the United States (CBTRUS). Incidence rates (IRs) and 95% confidence intervals (CIs) were calculated per 100000 person-years (py) and age-standardized to the 2011 Canadian population for comparisons within Canada and to the 2000 United States population for comparisons with the US.ResultsOverall, 12515 malignant brain and other CNS tumors were diagnosed in the Canadian population in 2009–2013 (IR: 8.71/100000 py; 95% CI: 8.56, 8.86); 7085 were among males (IR: 10.06/100000 py; 95% CI: 9.82, 10.29) and 5430 among females (IR: 7.41/100000 py; 95% CI: 7.22, 7.61). Of these, 12115 were classifiable according to histological subgroups defined by CBTRUS. The most common histology was glioblastoma (IR: 4.06/100000 py; 95% CI: 3.95, 4.16). Among those aged 0–19 years, 1130 malignant brain and CNS tumors were diagnosed in 2009–2013 (IR: 3.36/100000 py; 95% CI: 3.16, 3.56). The most common histology among the pediatric population was embryonal tumor (IR: 0.74/100000 py; 95% CI: 0.65, 0.84).ConclusionsThese data represent an initial detailed report on the frequency and distribution of primary malignant brain and other CNS tumors diagnosed in the Canadian population in 2009–2013. The reported distributions of tumor diagnoses by sex and age reflected expected patterns based on the literature from similar populations. A report incorporating data on nonmalignant primary brain tumors is forthcoming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.