ObjectivesAssess whether impactibility modelling is being used to refine risk stratification for preventive health interventions.DesignSystematic review.SettingPrimary and secondary healthcare populations.PapersArticles published from 2010 to 2020 on the use or implementation of impactibility modelling in population health management, reported with the terms ‘intervenability’, ‘amenability’, and ‘propensity to succeed’ (PTS) and associated with the themes ‘care sensitivity’, ‘characteristic responders’, ‘needs gap’, ‘case finding’, ‘patient selection’ and ‘risk stratification’.InterventionsQualitative synthesis to identify themes for approaches to impactibility modelling.ResultsOf 1244 records identified, 20 were eligible for inclusion. Identified themes were ‘health conditions amenable to care’ (n=6), ‘PTS modelling’ (n=8) and ‘comparison or combination with clinical judgement’ (n=6). For the theme ‘health conditions amenable to care’, changes in practice did not reduce admissions, particularly for ambulatory care sensitive conditions, and sometimes increased them, with implementation noted as a possible issue. For ‘PTS modelling’, high costs and needs did not necessarily equate to high impactibility and targeting a larger number of individuals with disorders associated with lower costs had more potential. PTS modelling seemed to improve accuracy in care planning, estimation of cost savings, engagement and/or care quality. The ‘comparison or combination with clinical judgement’ theme suggested that models can reach reasonable to good discriminatory power to detect impactable patients. For instance, a model used to identify patients appropriate for proactive multimorbid care management showed good concordance with physicians (c-statistic 0.75). Another model employing electronic health record scores reached 65% concordance with nurse and physician decisions when referring elderly hospitalised patients to a readmission prevention programme. However, healthcare professionals consider much wider information that might improve or impede the likelihood of treatment impact, suggesting that complementary use of models might be optimum.ConclusionsThe efficiency and equity of targeted preventive care guided by risk stratification could be augmented and personalised by impactibility modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.