The migration of neuronal precursors along radial glial fibers is a critical step in the formation of the nervous system. In this report, we show that neuregulin-erbB receptor signaling plays a crucial role in the migration of cerebellar granule cells along radial glial fibers. Granule cells express neuregulin (NRG), and radial glia cells express erbB4 in the developing cerebellum and in vitro. When the glial erbB receptors are blocked, neurons fail to induce radial glia formation, and their migration along radial glial fibers is impaired. Moreover, soluble NRG is as effective as neuron-glia contact in the induction of radial glia formation. These results suggest that the activation of glial erbB4 by NRG is an early critical step in the neuronal migration program.
GATA factors are transcriptional regulatory proteins that play critical roles in the differentiation of multiple cell types in both vertebrates and invertebrates. Recent evidence suggests that the biological activities of both mammalian and Drosophila GATA factors are controlled in part by physical interaction with multitype zinc-finger proteins, Friend of GATA-1 (FOG) and U-shaped (Ush), respectively. Here we describe a new FOG-related polypeptide, designated FOG-2, that is likely to participate in differentiation mediated by GATA factors in several tissues. Expression of FOG-2 mRNA differs from that of FOG and is largely restricted to heart, neurons, and gonads in the adult. Somewhat broader expression is evident during mouse embryonic development. Similar to FOG and Ush, FOG-2 protein interacts specifically with the amino finger of GATA factors in the yeast two-hybrid system and in mammalian cells. Remarkably, though FOG-2 is quite divergent from FOG in its primary sequence, forced expression of FOG-2 rescues terminal erythroid maturation of FOG ؊͞؊ hematopoietic cells. Thus, members of the FOG family of cofactors share highly specific association with GATA factors and are substantially interchangeable with respect to some aspects of function in vivo. The interaction of GATA and FOG family members constitutes an evolutionarily conserved paradigm for transcriptional control in differentiation and organogenesis.
Neuregulin (NRG), a growth and differentiation factor that signals via erbB receptor tyrosine kinases, has been shown to have biological effects in both the CNS and the peripheral nervous system. We report here that erbB4 is expressed in mature cerebellar granule cells, where it appears to be concentrated at the granule cell postsynaptic terminals. We also show that one form of NRG, Ig-NRG, plays a crucial role in aspects of cerebellar granule cell development in vitro. First, Ig-NRG treatment of granule cells in culture selectively induces the expression of the GABA(A) receptor beta2 subunit. This increase in subunit expression is paralleled by an increase in functional GABA(A) receptors. In contrast to its effects on GABA(A) receptor subunit expression, Ig-NRG does not upregulate NMDA receptor N2B and N2C subunit expression. Second, we demonstrate that Ig-NRG also enhances neurite outgrowth from cultured granule cells. Ig-NRG does not, however, act as a survival factor for the granule cells. We have compared the effect of Ig-NRG with the effects of brain-derived neurotrophic factor (BDNF), a neurotrophin that exerts specific effects on granule cells in culture, and found that BDNF does not mimic the effects of Ig-NRG on GABA(A) receptor subunit expression. Our results show that Ig-NRG has specific effects on granule cell development and maturation and may regulate these processes in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.