Previously, we showed that 3% (31/1032)of asymptomatic healthcare workers (HCWs) from a large teaching hospital in Cambridge, UK, tested positive for SARS-CoV-2 in April 2020. About 15% (26/169) HCWs with symptoms of coronavirus disease 2019 (COVID-19) also tested positive for SARS-CoV-2 (Rivett et al., 2020). Here, we show that the proportion of both asymptomatic and symptomatic HCWs testing positive for SARS-CoV-2 rapidly declined to near-zero between 25th April and 24th May 2020, corresponding to a decline in patient admissions with COVID-19 during the ongoing UK ‘lockdown’. These data demonstrate how infection prevention and control measures including staff testing may help prevent hospitals from becoming independent ‘hubs’ of SARS-CoV-2 transmission, and illustrate how, with appropriate precautions, organizations in other sectors may be able to resume on-site work safely.
Next-generation sequencing is becoming increasingly common in clinical laboratories worldwide and is revolutionizing clinical molecular testing. However, the large amounts of raw data produced by next-generation sequencing assays and the need for complex bioinformatics analyses present unique challenges. Proficiency testing in clinical laboratories has traditionally been designed to evaluate assays in their entirety; however, it can be alternatively applied to separate assay components. We developed and implemented a multi-institutional proficiency testing approach to directly assess custom bioinformatics and variant interpretation processes. Six clinical laboratories, all of which use the same commercial library preparation kit for next-generation sequencing analysis of tumor specimens, each submitted raw data (FASTQ files) from four samples. These 24 file sets were then deidentified and redistributed to five of the institutions for analysis and interpretation according to their clinically validated approach. Among the laboratories, there was a high rate of concordance in the calling of single-nucleotide variants, in particular those we considered clinically significant (100% concordance). However, there was significant discordance in the calling of clinically significant insertions/deletions, with only two of seven being called by all participating laboratories. Missed calls were addressed by each laboratory to improve their bioinformatics processes. Thus, through our alternative proficiency testing approach, we identified the bioinformatic detection of insertions/deletions as an area of particular concern for clinical laboratories performing next-generation sequencing testing.
6The SARS-CoV-2 pandemic has changed the face of the globe and upended the daily lives of 1 7billions. In an effort to bring mass-testing to as many as possible, multiple diagnostic tests 1 8including molecular, antigen detection and serological assays have been rapidly developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.