The branched-chain protein amino acids isoleucine, valine and leucine can provide precursors for synthesis of complex polyketide secondary metabolites in streptomycetes ; therefore the regulation of their own synthesis is of interest. DNA sequences upstream of ilvBNC, ilvD, leuA, leuB, ilvE and leuCD in Streptomyces coelicolor A3(2) have been obtained in this laboratory or as part of the S. coelicolor genome sequencing project. Upstream of ilvB and leuA, typical features of classical attenuator systems can be discerned, in particular hypothetical short ORFs with runs of Ile/Val/Leu and Leu codons, respectively. No such features are apparent upstream of other genes or gene clusters present. All five upstream regions were fused to xylE (encoding catechol dioxygenase, CO) as a reporter gene in the SCP2*-based low-copy-number vector pIJ2839. All wild-type regions showed strong depression of CO activity in the presence of all three branched-chain amino acids whether or not the attenuation features were present. By site-directed mutagenesis, the Ile/Val/Leu and Leu triplets in the putative attenuator peptides for ilvB and leuA were replaced by ones for other amino acids. In the case of ilvB, this had no effect at all ; for leuA, the wild-type regulatory phenotype persisted in at least some experiments. It was concluded that (i) an unknown regulatory mechanism must be operating in the ilv/leu system of S. coelicolor A3(2) in place of classical attenuation ; and (ii) it is unsafe to infer the functioning of a regulatory mechanism from sequence homologies alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.