F645A, UAS-EcR-B2W650A or UAS-IR-EcR (core) showed moderate filopodial activity and normal, albeit reduced, adult-like branching during outgrowth. These results are consistent with the role of activation versus derepression via EcR for successive phases of neuronal remodeling and suggest that functional ecdysone receptor is necessary for some, but not all, remodeling events.
The adult central nervous system (CNS) of Drosophila is largely composed of relatively homogenous neuronal classes born during larval life. These adult-specific neuron lineages send out initial projections and then arrest development until metamorphosis, when intense sprouting occurs to establish the massive synaptic connections necessary for the behavior and function of the adult fly. In this study, we identified and characterized specific lineages in the adult CNS and described their secondary branch patterns. Because prior studies show that the outgrowth of incumbent remodeling neurons in the CNS is highly dependent on the ecdysone pathway, we investigated the role of ecdysone in the development of the adult-specific neuronal lineages using a dominant-negative construct of the ecdysone receptor (EcR-DN). When EcR-DN was expressed in clones of the adult-specific lineages, neuroblasts persisted longer, but we saw no alteration in the initial projections of the lineages. Defects were observed in secondary arbors of adult neurons, including clumping and cohesion of fine branches, misrouting, smaller arbors and some defasciculation. The defects varied across the multiple neuron lineages in both appearance and severity. These results indicate that the ecdysone receptor complex influences the fine-tuning of connectivity between neuronal circuits, in conjunction with other factors driving outgrowth and synaptic partnering.
Mutations in either of two tumor suppressor genes, TSC1 or TSC2, cause tuberous sclerosis complex (TSC), a syndrome resulting in benign hamartomatous tumors and neurological disorders. Cellular growth defects and neuronal disorganization associated with TSC are believed to be due to upregulated TOR signaling. We overexpressed Rheb, an upstream regulator of TOR, in two different subsets of D. melanogaster central brain neurons in order to upregulate the Tsc-Rheb-TOR pathway. Overexpression of Rheb in either the mushroom bodies or the insulin producing cells resulted in enlarged axon projections and cell bodies, which continued to increase in size with prolonged Rheb expression as the animals aged. Additionally, Rheb overexpression in the mushroom bodies resulted in deficiencies in 3 hr but not immediate appetitive memory. Thus, Rheb overexpression in the central brain neurons of flies causes not only morphological phenotypes, but behavioral and aging phenotypes that may mirror symptoms of TSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.