Recently acquired fMRI data from human and macaque infants provide novel insights into the origins of cortical networks specialized for perceiving faces. Data from both species converge: cortical regions responding preferentially to faces are present and spatially organized early in infancy, although fully selective face areas emerge much later. What explains the earliest cortical responses to faces? We review two proposed mechanisms: proto-organization for simple shapes in visual cortex, and an innate subcortical schematic face template. In addition, we propose a third mechanism: infants choose to look at faces to engage in positively valenced, contingent social interactions. Activity in medial prefrontal cortex during social interactions may, directly or indirectly, guide the organization of cortical face areas.
Do children and adults engage in spontaneous Theory of Mind (ToM)? Accumulating evidence from anticipatory looking (AL) studies suggests that they do. But a growing body of studies failed to replicate these original findings. This paper presents the first step of a large-scale multi-lab collaboration dedicated to testing the robustness of spontaneous ToM measures. It examines whether 18-27-month-olds and adults’ anticipatory looks distinguish between knowledgeable and ignorant agents. In a pre-registered study with toddlers [anticipated N = 440, 50% female] and adults [anticipated N = 360, 50% female] from diverse ethnic backgrounds, we found that [DESCRIBE RESULT AND EFFECT SIZE FOR MAIN CONFIRMATORY ANALYSIS]. This provides [SUPPORT/SOME SUPPORT/NO SUPPORT] for spontaneous, epistemic state-based action anticipation in an AL paradigm.
Purpose
Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware‐related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32‐channel array coil.
Methods
To allow imaging with a close‐fitting head array coil for infants aged 1‐18 months, an adjustable head coil concept was developed. The coil setup facilitates a half‐seated scanning position to improve the infant’s overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant’s head. The constructed array coil was evaluated from phantom data using bench‐level metrics, signal‐to‐noise ratio (SNR) performances, and accelerated imaging capabilities for both in‐plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance.
Results
Phantom data showed a 2.7‐fold SNR increase on average when compared with a commercially available 32‐channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25‐fold and 3‐fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k‐space reconstruction methods and SMS techniques.
Conclusions
An infant‐friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32‐channel array coil is well‐suited for fMRI acquisitions in awake infants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.