Evidence is presented for an alternative to the superoxide dismutase (SOD)-catalase oxidative stress defense system in Desulfovibrio vulgaris (strain Hildenborough). This alternative system consists of the nonheme iron proteins, rubrerythrin (Rbr) and rubredoxin oxidoreductase (Rbo), the product of the rbo gene (also called desulfoferrodoxin). A ⌬rbo strain of D. vulgaris was found to be more sensitive to internal superoxide exposure than was the wild type. Unlike Rbo, expression of plasmid-borne Rbr failed to restore the aerobic growth of a SOD-deficient strain of Escherichia coli. Conversely, plasmid-borne expression of two different Rbrs from D. vulgaris increased the viability of a catalase-deficient strain of E. coli that had been exposed to hydrogen peroxide whereas Rbo actually decreased the viability. A previously undescribed D. vulgaris gene was found to encode a protein having 50% sequence identity to that of E. coli Fe-SOD. This gene also encoded an extended N-terminal sequence with high homologies to export signal peptides of periplasmic redox proteins. The SOD activity of D. vulgaris is not affected by the absence of Rbo and is concentrated in the periplasmic fraction of cell extracts. These results are consistent with a superoxide reductase rather than SOD activity of Rbo and with a peroxidase activity of Rbr. A joint role for Rbo and Rbr as a novel cytoplasmic oxidative stress protection system in D. vulgaris and other anaerobic microorganisms is proposed.
Rubrerythrin is a nonheme iron protein of unknown function isolated from Desulfovibrio vulgaris (Hildenborough). We have sequenced a 3.3-kbp SalI fragment of D. vulgaris chromosomal DNA containing the rubrerythrin gene, rbr, identified additional open reading frames (ORFs) adjacent to rbr, and shown that these ORFs are part of a transcriptional unit containing rbr. One ORF, designated fur, lies just upstream of rbr and encodes a 128-amino-acid-residue protein which shows homology to Fur (ferric uptake regulatory) proteins from other purple bacteria. The other ORF, designated rdl, lies just downstream of rbr and encodes a 74-residue protein with significant sequence homology to rubredoxins but with a different number and spacing of cysteine residues. Overexpression of rdl in Escherichia coli yielded a protein, Rdl, which has spectroscopic properties and iron content consistent with one Fe 3؉ (SCys) 4 site per polypeptide but is clearly distinct from both rubrerythrin and a related protein, nigerythrin. Northern analysis indicated that fur, rbr, and rdl were each present on a transcript of 1.3 kb; i.e., these three genes are cotranscribed. Because D. vulgaris nigerythrin appears to be closely related to rubrerythrin, and its function is also unknown, we cloned and sequenced the gene encoding nigerythrin, ngr. The amino acid sequence of nigerythrin is 33% identical to that of rubrerythrin, and all residues which furnish iron ligands to both the FeS 4 and diiron-oxo sites in rubrerythrin are conserved in nigerythrin. Despite the close resemblance of these two proteins, ngr was found to be no closer than 7 kb to rbr on the D. vulgaris chromosome, and Northern analysis showed that, in contrast to rbr, ngr is not cotranscribed with other genes. Possible redox-linked functions for rubrerythrin and nigerythrin in iron homeostasis are proposed.Rubrerythrin (Rr) is one of a large number of nonheme iron proteins found in anaerobic sulfate-reducing bacteria (16,28). Rr was isolated from Desulfovibrio vulgaris (Hildenborough) as a 44-kDa homodimer which exhibited spectroscopic signatures characteristic of two distinct types of iron sites: one rubredoxin-like FeS 4 site and one nonsulfur, oxo-bridged diiron site. The crystal structure of recombinant D. vulgaris Rr (10) revealed that each subunit is folded into two domains: an Nterminal four-helix bundle surrounding the oxo-bridged diiron site, and a smaller C-terminal rubredoxin-like protein fold surrounding the FeS 4 site. Rr can be structurally classified as a member of a continually expanding class of so-called diironoxo proteins (20,30). This class of proteins contains an oxo-or hydroxo-bridged diiron site connected to the protein by carboxylate and histidine ligands and embedded within a fourhelix bundle protein fold. Other members of this class utilize O 2 for functions ranging from tyrosyl radical generation and hydrocarbon hydroxylation in prokaryotes, fatty acyl desaturation in plants, and reversible O 2 binding in invertebrates (20). The iron storage proteins ferriti...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.