Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder mainly affecting females and is associated with mutations in MECP2, the gene encoding methyl CpG-binding protein 2. Mouse models suggest that recombinant human insulinlike growth factor 1 (IGF-1) (rhIGF1) (mecasermin) may improve many clinical features. We evaluated the safety, tolerability, and pharmacokinetic profiles of IGF-1 in 12 girls with MECP2 mutations (9 with RTT). In addition, we performed a preliminary assessment of efficacy using automated cardiorespiratory measures, EEG, a set of RTT-oriented clinical assessments, and two standardized behavioral questionnaires. This phase 1 trial included a 4-wk multiple ascending dose (MAD) (40-120 μg/kg twice daily) period and a 20-wk open-label extension (OLE) at the maximum dose. Twelve subjects completed the MAD and 10 the entire study, without evidence of hypoglycemia or serious adverse events. Mecasermin reached the CNS compartment as evidenced by the increase in cerebrospinal fluid IGF-1 levels at the end of the MAD. The drug followed nonlinear kinetics, with greater distribution in the peripheral compartment. Cardiorespiratory measures showed that apnea improved during the OLE. Some neurobehavioral parameters, specifically measures of anxiety and mood also improved during the OLE. These improvements in mood and anxiety scores were supported by reversal of right frontal alpha band asymmetry on EEG, an index of anxiety and depression. Our data indicate that IGF-1 is safe and well tolerated in girls with RTT and, as demonstrated in preclinical studies, ameliorates certain breathing and behavioral abnormalities.
OBJECTIVES Cerebral pressure passivity is common in sick premature infants and may predispose to germinal matrix/intraventricular hemorrhage (GM/IVH), a lesion with potentially serious consequences. We studied the association between the magnitude of cerebral pressure passivity and GM/IVH. PATIENTS AND METHODS We enrolled infants <32 weeks’ gestational age with indwelling mean arterial pressure (MAP) monitoring and excluded infants with known congenital syndromes or antenatal brain injury. We recorded continuous MAP and cerebral near-infrared spectroscopy hemoglobin difference (HbD) signals at 2 Hz for up to 12 hours/day and up to 5 days. Coherence and transfer function analysis between MAP and HbD signals was performed in 3 frequency bands (0.05–0.25, 0.25–0.5, and 0.5–1.0 Hz). Using MAP-HbD gain and clinical variables (including chorioamnionitis, Apgar scores, gestational age, birth weight, neonatal sepsis, and Score for Neonatal Acute Physiology II), we built a logistic regression model that best predicts cranial ultrasound abnormalities. RESULTS In 88 infants (median gestational age: 26 weeks [range 23–30 weeks]), early cranial ultrasound showed GM/IVH in 31 (37%) and parenchymal echodensities in 10 (12%) infants; late cranial ultrasound showed parenchymal abnormalities in 19 (30%) infants. Low-frequency MAP-HbD gain (highest quartile mean) was significantly associated with early GM/IVH but not other ultrasound findings. The most parsimonious model associated with early GM/IVH included only gestational age and MAP-HbD gain. CONCLUSIONS This novel cerebrovascular monitoring technique allows quantification of cerebral pressure passivity as MAP-HbD gain in premature infants. We show that high MAP-HbD gain is significantly associated with GM/IVH. The precise temporal and causal relationship between MAP-HbD gain and GM/IVH awaits further study.
We report the long-term effect of real-time functional MRI (rtfMRI) training on voluntary regulation of the level of activation from a hand motor area. During the performance of a motor imagery task of a right hand, blood-oxygenation-level-dependent (BOLD) signal originating from a primary motor area was presented back to the subject in real-time. Demographically matched individuals also received the same procedure without valid feedback information. Followed by the initial rtfMRI sessions, both groups underwent two-week long, daily-practice of the task. Off-line data analysis revealed that the individuals in the experimental group were able to increase the level of BOLD signal from the regulatory target to a greater degree compared to the control group. Furthermore, the learned level of activation was maintained after the two-week period, with the recruitment of additional neural circuitries such as the hippocampus and the limbo-thalamocortical pathway. The activation obtained from the control group, in the absence of proper feedback, was indifferent across the training conditions. The level of BOLD activity from the target regulatory region was positively correlated with a self evaluative score within the experimental group, while the majority of control subjects had difficulty adopting a strategy to attain the desired level of functional regulation. Our results suggest that rtfMRI helped individuals learn how to increase region-specific cortical activity associated with a motor imagery task, and the level of increased activation in motor areas was consolidated after the two-week self-practice period, with the involvement of neural circuitries implicated in motor skill learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.