Viroids are circular noncoding RNAs (ncRNAs) that infect plants. Despite differences in the genetic make-up and biogenesis, viroids and various long ncRNAs all rely on RNA structure-based interactions with cellular factors for function. Viroids replicating in the nucleus utilize DNA-dependent RNA polymerase II (Pol II) for transcription, a process that involves a unique splicing form of transcription factor IIIA (TFIIIA-7ZF). Here, we provide evidence showing that potato spindle tuber viroid (PSTVd) interacts with a TFIIIA splicing regulator (ribosomal protein L5; RPL5) and PSTVd infection compromises the regulatory role of RPL5 over splicing of transcripts, while ectopic expression of RPL5 reduces TFIIIA-7ZF expression and attenuates PSTVd accumulation. Furthermore, we illustrate that the RPL5 binding site on the PSTVd genome resides in the central conserved region critical for replication. Together, our data suggest that viroids can modulate specific regulatory factors leading to splicing changes in only one or a few genes. This study also has implications for understanding the functional mechanisms of ncRNAs and elucidating the global splicing changes in various host-pathogen interactions.Viroids are the smallest replicons among all living entities. As circular noncoding RNAs, viroids can replicate and spread in plants often resulting in disease. Potato spindle tuber viroid (PSTVd), the type species of nuclear-replicating viroids, requires a unique splicing form of transcription factor IIIA (TFIIIA-7ZF) for its propagation. Here, we provide evidence showing that PSTVd directly interacts with a splicing regulator, RPL5, to favor the expression of TFIIIA-7ZF, thereby promoting viroid replication. This finding provides new insights to better understand viroid biology and sheds light on the noncoding RNA-based regulation of splicing. Our discovery also establishes RPL5 as a novel negative factor regulating viroid replication in the nucleus and highlights a potential means for viroid control.
Tomato has undergone extensive selections during domestication. Recent progress has shown that genomic structural variants (SVs) have contributed to gene expression dynamics during tomato domestication, resulting in changes of important traits. Here, we performed comprehensive analyses of small RNAs (sRNAs) from nine representative tomato accessions. We demonstrate that SVs substantially contribute to the dynamic expression of the three major classes of plant sRNAs: microRNAs (miRNAs), phased secondary short interfering RNAs (phasiRNAs), and 24-nucleotide heterochromatic siRNAs (hc-siRNAs). Changes in the abundance of phasiRNAs and 24-nucleotide hc-siRNAs likely contribute to the alteration of mRNA gene expression in cis during tomato domestication, particularly for genes associated with biotic and abiotic stress tolerance. We also observe that miRNA expression dynamics are associated with imprecise processing, alternative miRNA-miRNA* selections, and SVs. SVs mainly affect the expression of less-conserved miRNAs that do not have established regulatory functions or low abundant members in highly expressed miRNA families. Our data highlight different selection pressures on miRNAs compared to phasiRNAs and 24-nucleotide hc-siRNAs. Our findings provide insights into plant sRNA evolution as well as SV-based gene regulation during crop domestication. Furthermore, our dataset provides a rich resource for mining the sRNA regulatory network in tomato.
Ryanodine receptor 2 (RyR2) and SERCA2a are two major players in myocyte calcium (Ca) cycling that are modulated physiologically, affected by disease and thus considered to be potential targets for cardiac disease therapy. However, how RyR2 and SERCA2a influence each others’ activities, as well as the primary and secondary consequences of their combined manipulations remain controversial. In this study, we examined the effect of acute upregulation of SERCA2a on arrhythmogenesis by conditionally overexpressing SERCA2a in a mouse model featuring hyperactive RyR2s due to ablation of calsequestrin 2 (CASQ2). CASQ2 knock-out (KO) mice were crossbred with doxycycline (DOX)-inducible SERCA2a transgenic mice to generate KO-TG mice. In-vivo ECG studies have shown that induction of SERCA2a (DOX+) overexpression markedly exacerbated both ventricular and atrial arrhythmias in vivo, compared with uninduced KO-TG mice (DOX-). Consistent with that, confocal microscopy in both atrial and ventricular myocytes demonstrated that conditional upregulation of SERCA2a enhanced the rate of occurrence of diastolic Ca release events. Additionally, deep RNA sequencing identified 17 downregulated genes and 5 upregulated genes in DOX+ mice, among which Ppp1r13l, Clcn1, and Agt have previously been linked to arrhythmias. Our results suggest that conditional upregulation of SERCA2a exacerbates hyperactive RyR2-mediated arrhythmias by further elevating diastolic Ca release.
Seasonal variation of color patterns on butterfly wings are iconic examples of developmentally plastic traits that can influence adaptation and speciation. Yet, there are few examples of such seasonal polyphenisms that have characterized the environmental cues, ecological consequences, or genetic mechanisms involved in generating the plastic variation of wing color. Further, there is a lack of support that such plasticity may impact the adaptive diversification of butterfly wing patterns. Here, we report a case of seasonal polyphenism in pigment and structurally-based color patterns of Zerene cesonia that are strikingly similar to the color pattern divergence seen on the wings of sulphur butterflies. We show that (i) coordinated changes in temperature and photoperiod drive the plasticity, (ii) the plastic color changes impact how fast the butterflies can warm, (iii) identify spalt as likely be involved the genetic coupling of the pigment and structurally-based color plastic response. We further show that this plastic wing changes phenocopy wing pattern divergence between Zerene species, as well as the color pattern differences known to be commonly involved in sexual selection and speciation across sulphur butterflies. Together, our results demonstrate that shared environmental cues and genetic basis for pigment and structural color plasticity may result in conditions that may have facilitated species diversification of sulphur butterflies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.