Our study concludes that specific peptides from pro- and catalytic domains of hPCSK9 can regulate LDL-R in cell based assay and may be useful for development of novel therapeutics for cholesterol regulation.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis, mediating degradation of the liver low-density lipoprotein receptor (LDLR). In fact, gain- and loss-of-function PCSK9 variations in human populations associate with hyper- or hypo- cholesterolemia, respectively. Exactly how PCSK9 promotes degradation of the LDLR, the identity of the other biomolecules involved in this process, and the global effect of PCSK9 on other proteins has not been thoroughly studied. Here we employ stable isotope labeling with amino acids in cell culture (SILAC) to present the first quantitative, subcellular proteomic study of proteins affected by the stable overexpression of a gain-of-function PCSK9 membrane-bound chimera (PCSK9-V5-ACE2) in comparison to control, empty vector transfections in a human hepatocyte (HuH7) cell line. The expression level of 327 of 5790 peptides was modified by PCSK9-V5-ACE2 overexpression. Immunoblotting was carried out for the control transferrin receptor, shown to be unaffected in cells overexpressing PCSK9-V5-ACE2, thus validating our SILAC results. We also used immunoblotting to confirm the novel SILAC results of up- and down-regulation of several proteins in cells overexpressing PCSK9-V5-ACE2. Moreover, we documented the novel down-regulation of the EH domain binding protein-1 (EHBP1) in a transgenic PCSK9 mouse model and its up-regulation in a PCSK9 knockout mouse model.
Proprotein Convertase Subtilisin Kexin9 (PCSK9), originally called Neural Apoptosis-Regulated Convertase1 (NARC1), is the latest member of mammalian subtilase super-family. Since its discovery in 2003, it has drawn significant attention because of its function in the degradation of Low Density Lipoprotein Receptor (LDL-R). LDL-R removes circulating LDL-cholesterol (LDL-C) in the blood. Increased level of PCSK9 functional activity will lead to an accumulation of cholesterol in the blood - a high risk factor for cardiovascular disease. This is confirmed by PCSK9 knock out and transgenic animals, various biochemical and clinical studies involving "gain and loss of function" genetic mutations of PCSK9 found in various subset of populations. Owing to this finding, development of strategies for inhibition of PCSK9 function has drawn significant research interest for therapeutic intervention of hypercholesterolemia. Thus PCSK9 is a target for the development of new cholesterol lowering drugs.
Peptide analogs were designed by inserting a protease resistant methylene-oxy (-CH(2)-O-) pseudoamide function at the cleavage site of (251)Asp-Ile-Tyr-Ile-Ser-Arg-Arg-Leu-Leu↓Gly-Thr-Phe-Thr(263), derived from SKI-1 processing site of Lassa virus glycoprotein. The synthesis was conducted by substituting Leu-Gly with previously made Leu-CH(2)-O-Gly. Flexible linear and conformationally constrained circular and disulphide bridged cyclic peptides were prepared by solid phase method. Circular and cyclic peptides inhibited SKI-1 more potently (K(i)~14-20 µM) than the corresponding acyclic peptide (K(i)~51 µM). They also blocked SKI-1-mediated processing of pro-h(human)SREBP2 into its mature form in HepG2 cells. Circular pseudopeptides designed from hATF6 and hSREBP2 also inhibited SKI-1. This is the first report of circular and cyclic Ψ(CH(2)-O) containing peptides as SKI-1 inhibitors with potential therapeutic applications in cholesterol synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.