Block copolymers self-assemble in bulk, forming a number of intricate block segregation patterns. Such assembled structures can serve as precursors to nano- or microstructures with numerous potential applications. For many applications, such as catalysis, a high surface area to volume ratio is desirable, which requires “breaking up” copolymer solid into dispersed particles. Reported in this letter is the preparation of water-dispersible block copolymer microspheres containing Pd nanoparticles. The Pd nanoparticles are a more efficient catalyst for alkene hydrogenation than is the commercial Pd black catalyst.
Sidestream EBPR (S2EBPR) is an emerging alternative process to address common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. A systematic evaluation and comparison of the process performance and microbial community structure was conducted between conventional and S2EBPR facilities in North America. The statistical analysis suggested higher performance stability in S2EBPR than conventional EBPR, although possible bias associated with other plant‐specific factors might have affected the comparison. Variations in stoichiometric values related to EBPR activity and discrepancies between the observed values and current model predictions suggested a varying degree of metabolic versatility of PAOs in S2EBPR systems that warrant further investigation. Microbial community analysis using various techniques suggested comparable known candidate PAO relative abundances in S2EBPR and conventional EBPR systems, whereas the relative abundance of known candidate GAOs seemed to be consistently lower in S2EBPR facilities than conventional EBPR facilities. 16S rRNA gene sequencing analysis revealed differences in the community phylogenetic fingerprints between S2EBPR and conventional facilities and indicated statistically higher microbial diversity index values in S2EBPR facilities than those in conventional EBPRs. Practitioner Points Sidestream EBPR (S2EBPR) can be implemented with varying and flexible configurations, and they offer advantages over conventional configurations for addressing the common challenges in EBPR related to weak wastewater influent and may improve EBPR process stability. Survey of S2EBPR plants in North America suggested statistically more stable phosphorus removal performance in S2EBPR plants than conventional EBPRs, although possible bias might affect the comparison due to other plant‐specific factors. The EBPR kinetics and stoichiometry of the S2EBPR facilities seemed to vary and are associated with metabolic versatility of PAOs in S2EBPR systems that warrant further investigation. The abundance of known candidate PAOs in S2EBPR plants was similar to those in conventional EBPRs, and the abundance of known candidate GAOs was generally lower in S2EBPR than conventional EBPR facilities. Further finer‐resolution analysis of PAOs and GAOs, as well as identification of other unknown PAOs and GAOs, is needed. Microbial diversity is higher in S2EBPR facilities compared with conventional ones, implying that S2EBPR microbial communities could show better resilience to perturbations due to potential functional redundancy.
Although in nearly 200 field treatments of producing oil wells polymers have effectively reduced the WOR, not all such wells polymers have effectively reduced the WOR, not all such wells with a high water cut are candidates for polymer treatment. This paper discusses the probable working mechanisms of polymers and presents guidelines for selecting wells to be treated. Introduction The use of polymers to reduce water production in high-watercut oil-producing wells has proved highly successful in many areas of the Mid-Continent region. This process is an outgrowth of the use of polymers to adjust permeability profiles for water polymers to adjust permeability profiles for water injection wells. It has been used in nearly 200 wells to date and has resulted in a water-oil-ratio (WOR) decrease of 60 to 90 percent in most wells. In many cases, oil production has been substantially increased. The flow of polymer solutions through porous media has been a subject of intense research over the past decade. A thorough review of this subject has been given by Savins and therefore will not be repeated here. Polymers are of interest to the petroleum industry because they are useful in secondary petroleum industry because they are useful in secondary recovery and in the improvement of injection profiles in waterflooding. The behavior of polymer solutions in porous media has been controversial and several mechanisms have been proposed as an explanation of polymer behavior. Perhaps more than one mechanism is operative, depending on conditions. We believe that the basic behavior of the polymers is independent of the process, but the techniques of using polymers and the way they are applied in different processes do vary. The treatment of producing wells with polymer solutions is a unique process to reduce the WOR by selectively reducing water production without greatly hindering oil flow. As the polymer solution is injected into the formation, it tends to seek out and flow into the higher-permeability water zone. For this reason, deeper penetration is obtained with the polymer than is possible with conventional nonselective plugging agents. For producing wells, when the treatment is successful, the response is usually rapid and dramatic and occurs in a matter of days. In contrast, with water injection wells and polymer flooding, the results of a polymer treatment may not be evident for 6 to 12 months or even longer. How Polymers Work Before discussing the details of how polymers work, we shall outline the salient features of this process. This paper is aimed at those persons unfamiliar with the process and is not intended to be technically precise. The terms "resistance factor" and "residual precise. The terms "resistance factor" and "residual resistance factor" have been defined elsewhere. Although these terms are applicable as defined, we also use them in a general sense, as shown in the following discussion and in Fig, 1. Because of its viscosity, a polymer solution would be expected to offer a given resistance to flow in a rock. The actual or total resistance to flow offered by some polymers, however, is some 5 to 20 times this expected resistance. The total resistance is important in polymer floods and injection wells, but is effective in producing wells only until the solution is returned producing wells only until the solution is returned to the wellbore. Core tests show, however, that after a polymer treatment, even after hundreds of pore volumes of brine have been produced, enough polymer is retained in the rock to provide a residual resistance that will reduce the brine flow by as much as 60 to 95 percent. JPT P. 143
The increasing use of ventricular assist devices (VADs) in terminal heart failure patients provides new challenges to cardiac rehabilitation physicians. Structured cardiac rehabilitation strategies are still poorly implemented for this special patient group. Clear guidance and more evidence for optimal modalities are needed. Thereby, attention has to be paid to specific aspects, such as psychological and social support and education (e.g., device management, INR self-management, drive-line care, and medication).In Germany, the post-implant treatment and rehabilitation of VAD Patients working group was founded in 2012. This working group has developed clear recommendations for the rehabilitation of VAD patients according to the available literature. All facets of VAD patients' rehabilitation are covered. The present paper is unique in Europe and represents a milestone to overcome the heterogeneity of VAD patient rehabilitation.
Regular physical activity has been shown to decrease the risk of many chronic health problems (Haskell, Lee, Pate et al., 2007). Recent research has shown a steep decline in physical activity as children develop through adolescence and into young adulthood (Sallis, 1993; Stone, McKenzie, Welk, Booth, 1998). Many universities across the country have updated their campus recreation programs and facilities to promote physical activity and healthy living. Overall health and wellness is one of the many benefits offered from campus recreation services. To maximize physical activity outcomes, an assessment of motivations to participate in campus recreation services should be considered. The purpose of this study was to investigate motivational factors that are associated with students' participation in intramural sports and compare these motivations across different demographic groups. The theoretical basis for this study was the Self-Determination Theory (SDT) developed by Deci and Ryan (1985). Motivational factors were measured using a modified version of the Motives for Physical Activity Scale developed by Frederick and Ryan (1993). Data collection occurred during the spring 2005 semester at a university in the southeastern United States. Significant relationships were identified between gender groups. Recommendations for campus recreation professionals are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.