Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. Humans protect themselves from these damaging compounds, in part, by absorbing antioxidants from high-antioxidant foods. This report describes the effects of consuming 1.5 g/kg body weight of corn syrup or buckwheat honey on the antioxidant and reducing capacities of plasma in healthy human adults. The corn syrup treatment contained 0.21 +/- 0.06 mg of phenolic antioxidants per gram, and the two buckwheat honey treatments contained 0.79 +/- 0.02 and 1.71 +/- 0.21 mg of phenolic antioxidants per gram. Following consumption of the two honey treatments, plasma total-phenolic content increased (P < 0.05) as did plasma antioxidant and reducing capacities (P < 0.05). These data support the concept that phenolic antioxidants from processed honey are bioavailable, and that they increase antioxidant activity of plasma. It can be speculated that these compounds may augment defenses against oxidative stress and that they might be able to protect humans from oxidative stress. Given that the average sweetener intake by humans is estimated to be in excess of 70 kg per year, the substitution of honey in some foods for traditional sweeteners could result in an enhanced antioxidant defense system in healthy adults.
Endothelial dysfunction characterizes many disease states including subclinical atherosclerosis. The consumption of flavanol-rich cocoa and cocoa-based products has been shown to improve endothelial function in both compromised and otherwise normal, healthy individuals when administered either acutely or over a period of several days, or weeks. Women experience increased risk for cardiovascular disease after menopause, which can be associated with endothelial dysfunction. Whether a flavanol-rich cocoa-based product can improve endothelial function in hypercholesterolemic postmenopausal women is not known. The purpose of the present study was to determine whether chronic dietary administration of flavanol-rich cocoa improves endothelial function and markers of cardiovascular health in hypercholesterolemic postmenopausal women. Thirty-two postmenopausal hypercholesterolemic women were randomly assigned to consume a high-flavanol cocoa beverage (high cocoa flavanols (CF)--446 mg of total flavanols), or a low-flavanol cocoa beverage (low CF--43 mg of total flavanols) for 6 weeks in a double-blind study (n=16 per group). Endothelial function was determined by brachial artery-reactive hyperemia. Plasma was analyzed for lipids (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol), hormones (follicle-stimulating hormone), total nitrate/nitrite, activation of cellular adhesion markers (vascular cell adhesion molecule 1, intercellular adhesion molecule 1, E-Selectin, P-Selectin), and platelet function and reactivity. Changes in these plasma markers were then correlated to brachial reactivity. Brachial artery hyperemic blood flow increased significantly by 76% (P<0.05 vs. baseline) after the 6-week cocoa intervention in the high CF group, compared with 32% in the low CF cocoa group (P=ns vs. baseline). The 2.4-fold increase in hyperemic blood flow with high CF cocoa closely correlated (r2=0.8) with a significant decrease (11%) in plasma levels of soluble vascular cell adhesion molecule-1. Similar responses were not observed after chronic use of low CF. There were no significant differences between high and low CF in other biochemical markers and parameters measured. This study is the first to identify beneficial vascular effects of flavanol-rich cocoa consumption in hypercholesterolemic postmenopausal women. In addition, our results suggest that reductions in plasma soluble vascular cell adhesion molecule-1 after chronic consumption of a flavanol-rich cocoa may be mechanistically linked to improved vascular reactivity.
L-Arginine is a common substrate for the enzymes arginase and nitric oxide synthase (NOS). Acute inhibition of arginase enzyme activity improves endothelium-dependent vasorelaxation, presumably by increasing availability of substrate for NOS. Arginase is activated by manganese (Mn), and the consumption of a Mn-deficient (Mn-) diet can result in low arginase activity. We hypothesize that endothelium-dependent vasorelaxation is greater in rats fed Mn- versus Mn sufficient (Mn+) diets. Newly weaned rats fed Mn+ diets (0.5 microg Mn/g; n = 12) versus Mn+ diets (45 microg Mn/g; n = 12) for 44 +/- 3 days had (i) lower liver and kidney Mn and arginase activity (P < or = 0.05), (ii) higher plasma L-arginine (P < or = 0.05), (iii) similar plasma and urine nitrate + nitrite, and (iv) similar staining for endothelial nitric oxide synthase in thoracic aorta. Vascular reactivity of thoracic aorta (approximately 720 microm i.d.) and small coronary arteries (approximately 110 microm i.d.) was evaluated using wire myographs. Acetylcholine (ACh; 10(-8)-10(-4) M) produced greater (P < or = 0.05) vasorelaxation in thoracic aorta from Mn- rats (e.g., maximal percent relaxation, 79 +/- 7%) versus Mn + rats (e.g., maximal percent relaxation, 54 +/- 9%) at 5 of 7 evaluated doses. Tension produced by NOS inhibition using N(G) monomethyl-L-arginine (L-NMMA; 10(-3) M) and vasorelaxation evoked by (i) arginase inhibition using difluoromethylornithine (DFMO; 10(-7) M), (ii) ACh (10(-8)-10(-4) M) in the presence of DFMO, and (iii) sodium nitroprusside (10(-9)-10(-4) M) were unaffected by diet. No differences existed between groups concerning these responses in small coronary arteries. These findings support our hypothesis that endothelium-dependent vasorelaxation is greater in aortic segments from rats that consume Mn- versus Mn+ diets; however, responses from small coronary arteries were unaffected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.